10 research outputs found

    Integrins and the Myocardium

    No full text

    Endothelial Expression of β1 Integrin Is Required for Embryonic Vascular Patterning and Postnatal Vascular Remodeling▿

    No full text
    The largest subgroup of integrins is that containing the β1 subunit. β1 integrins have been implicated in a wide array of biological processes ranging from adhesion to cell growth, organogenesis, and mechanotransduction. Global deletion of β1 integrin expression results in embryonic death at ca. embryonic day 5 (E5), a developmental time point too early to determine the effects of this integrin on vascular development. To elucidate the specific role of β1 integrin in the vasculature, we conditionally deleted the β1 gene in the endothelium. Homozygous deletion of β1 integrins in the endothelium resulted in failure of normal vascular patterning, severe fetal growth retardation, and embryonic death at E9.5 to 10, although there were no overt effects on vasculogenesis. Heterozygous endothelial β1 gene deletion did not diminish fetal or postnatal survival, but it reduced β1 subunit expression in endothelial cells from adult mice by approximately 40%. These mice demonstrated abnormal vascular remodeling in response to experimentally altered in vivo blood flow and diminished vascularization in healing wounds. These data demonstrate that endothelial expression of β1 integrin is required for developmental vascular patterning and that endothelial β1 gene dosing has significant functional effects on vascular remodeling in the adult. Understanding how β1 integrin expression is modulated may have significant clinical importance

    Striated muscle-specific β1D-integrin and FAK are involved in cardiac myocyte hypertrophic response pathway

    No full text
    Alterations in the extracellular matrix occur during the cardiac hypertrophic process. Because integrins mediate cell-matrix adhesion and beta(1D)-integrin (beta1D) is expressed exclusively in cardiac and skeletal muscle, we hypothesized that beta1D and focal adhesion kinase (FAK), a proximal integrin-signaling molecule, are involved in cardiac growth. With the use of cultured ventricular myocytes and myocardial tissue, we found the following: 1) beta1D protein expression was upregulated perinatally; 2) alpha(1)-adrenergic stimulation of cardiac myocytes increased beta1D protein levels 350% and altered its cellular distribution; 3) adenovirally mediated overexpression of beta1D stimulated cellular reorganization, increased cell size by 250%, and induced molecular markers of the hypertrophic response; and 4) overexpression of free beta1D cytoplasmic domains inhibited alpha(1)-adrenergic cellular organization and atrial natriuretic factor (ANF) expression. Additionally, FAK was linked to the hypertrophic response as follows: 1) coimmunoprecipitation of beta1D and FAK was detected; 2) FAK overexpression induced ANF-luciferase; 3) rapid and sustained phosphorylation of FAK was induced by alpha(1)-adrenergic stimulation; and 4) blunting of the alpha(1)-adrenergically modulated hypertrophic response was caused by FAK mutants, which alter Grb2 or Src binding, as well as by FAK-related nonkinase, a dominant interfering FAK mutant. We conclude that beta1D and FAK are both components of the hypertrophic response pathway of cardiac myocytes
    corecore