5 research outputs found

    Effectiveness and Safety of Hyperbaric Oxygen Therapy (HBOT) in Treating Diabetic Foot Ulcers (DFUs)

    Get PDF
    Introduction: Diabetic Foot Ulcers (DFUs) are one of the more dangerous complications of diabetes, contributing to morbidity, mortality, and major financial strain, potentially affecting patients' quality of life. Therefore, an effective DFU treatment is needed to both heal and reduce severe consequences, such as amputation. Studies into effective multiple therapeutic interventions for DFUs indicate that Hyperbaric Oxygen Therapy (HBOT) may be a current alternative for treating patients presenting with DFUs

    Clinically Relevant Insulin Degludec and its Interaction with Polysaccharides: A Biophysical Examination.

    Get PDF
    Protein polysaccharide complexes have been widely studied for multiple industrial applications and are popular due to their biocompatibility. Insulin degludec, an analogue of human insulin, exists as di-hexamer in pharmaceutical formulations and has the potential to form long multi-hexamers in physiological environment, which dissociate into monomers to bind with receptors on the cell membrane. This study involved complexation of two negatively charged bio-polymers xanthan and alginate with clinically-relevant insulin degludec (PIC). The polymeric complexations and interactions were investigated using biophysical methods. Intrinsic viscosity [η] and particle size distribution (PSD) of PIC increased significantly with an increase in temperature, contrary to the individual components indicating possible interactions. [η] trend was X > XA > PIC > A > IDeg. PSD trend was X>A>IDeg>XA>PIC. Zeta (ζ)- potential (with general trend of IDeg < A < XA < X ≈ PIC) revealed stable interaction at lower temperature which gradually changed with an increase in temperature. Likewise, sedimentation velocity indicated stable complexation at lower temperature. With an increase in time and temperature, changes in the number of peaks and area under curve were observed for PIC. Conclusively, stable complexation occurred among the three polymers at 4 °C and 18 °C and the complex dissociated at 37 °C. Therefore, the complex has the potential to be used as a drug delivery vehicle

    Analysis of insulin glulisine at the molecular level by X-ray crystallography and biophysical techniques

    Get PDF
    © 2021, The Author(s). This study concerns glulisine, a rapid-acting insulin analogue that plays a fundamental role in diabetes management. We have applied a combination of methods namely X-ray crystallography, and biophysical characterisation to provide a detailed insight into the structure and function of glulisine. X-ray data provided structural information to a resolution of 1.26Å. Crystals belonged to the H3 space group with hexagonal (centred trigonal) cell dimensions a = b = 82.44 and c = 33.65Å with two molecules in the asymmetric unit. A unique position of D21Glu, not present in other fast-acting analogues, pointing inwards rather than to the outside surface was observed. This reduces interactions with neighbouring molecules thereby increasing preference of the dimer form. Sedimentation velocity/equilibrium studies revealed a trinary system of dimers and hexamers/dihexamers in dynamic equilibrium. This new information may lead to better understanding of the pharmacokinetic and pharmacodynamic behaviour of glulisine which might aid in improving formulation regarding its fast-acting role and reducing side effects of this drug

    Clinically Relevant Insulin Degludec and Its Interaction with Polysaccharides: A Biophysical Examination

    No full text
    Protein polysaccharide complexes have been widely studied for multiple industrial applications and are popular due to their biocompatibility. Insulin degludec, an analogue of human insulin, exists as di-hexamer in pharmaceutical formulations and has the potential to form long multi-hexamers in physiological environment, which dissociate into monomers to bind with receptors on the cell membrane. This study involved complexation of two negatively charged bio-polymers xanthan and alginate with clinically-relevant insulin degludec (PIC). The polymeric complexations and interactions were investigated using biophysical methods. Intrinsic viscosity [&eta;] and particle size distribution (PSD) of PIC increased significantly with an increase in temperature, contrary to the individual components indicating possible interactions. [&eta;] trend was X &gt; XA &gt; PIC &gt; A &gt; IDeg. PSD trend was X &gt; A &gt; IDeg &gt; XA &gt; PIC. Zeta (&zeta;)- potential (with general trend of IDeg &lt; A &lt; XA &lt; X &asymp; PIC) revealed stable interaction at lower temperature which gradually changed with an increase in temperature. Likewise, sedimentation velocity indicated stable complexation at lower temperature. With an increase in time and temperature, changes in the number of peaks and area under curve were observed for PIC. Conclusively, stable complexation occurred among the three polymers at 4 &deg;C and 18 &deg;C and the complex dissociated at 37 &deg;C. Therefore, the complex has the potential to be used as a drug delivery vehicle

    Isolation and Biophysical Characterisation of Bioactive Polysaccharides from Cucurbita Moschata (Butternut Squash)

    No full text
    Cucurbits are plants that have been used frequently as functional foods. This study includes the extraction, isolation, and characterisation of the mesocarp polysaccharide of Cucurbita moschata. The polysaccharide component was purified by gel filtration into three fractions (NJBTF1, NJBTF2, and NJBTF3) of different molecular weights. Characterisation includes the hydrodynamic properties, identification of monosaccharide composition, and bioactivity. Sedimentation velocity also indicated the presence of small amounts of additional discrete higher molecular weight components even after fractionation. Sedimentation equilibrium revealed respective weight average molecular weights of 90, 31, and 19 kDa, with the higher fractions (NJBTF1 and NJBTF2) indicating a tendency to self-associate. Based on the limited amount of data (combinations of 3 sets of viscosity and sedimentation data corresponding to the 3 fractions), HYDFIT indicates an extended, semi-flexible coil conformation. Of all the fractions obtained, NJBTF1 showed the highest bioactivity. All fractions contained galacturonic acid and variable amounts of neutral sugars. To probe further, the extent of glycosidic linkages in NJBTF1 was estimated using gas chromatography&ndash;mass spectrometry (GCMS), yielding a high galacturonic acid content (for pectin polysaccharide) and the presence of fructans&mdash;the first evidence of fructans (levan) in the mesocarp. Our understanding of the size and structural flexibility together with the high bioactivity suggests that the polysaccharide obtained from C. moschata has the potential to be developed into a therapeutic agent
    corecore