8 research outputs found

    Resting-State Functional MRI Metrics in Patients With Chronic Mild Traumatic Brain Injury and Their Association With Clinical Cognitive Performance.

    Get PDF
    Mild traumatic brain injury (mTBI) accounts for more than 80% of people experiencing brain injuries. Symptoms of mTBI include short-term and long-term adverse clinical outcomes. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was conducted to measure voxel-based indices including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) in patients suffering from chronic mTBI; 64 patients with chronic mTBI at least 3 months post injury and 40 healthy controls underwent rs-fMRI scanning. Partial correlation analysis controlling for age and gender was performed within mTBI cohort to explore the association between rs-fMRI metrics and neuropsychological scores. Compared with controls, chronic mTBI patients showed increased fALFF in the left middle occipital cortex (MOC), right middle temporal cortex (MTC), and right angular gyrus (AG), and increased ReHo in the left MOC and left posterior cingulate cortex (PCC). Enhanced FC was observed from left MOC to right precuneus; from right MTC to right superior temporal cortex (STC), right supramarginal, and left inferior parietal cortex (IPC); and from the seed located at right AG to left precuneus, left superior medial frontal cortex (SMFC), left MTC, left superior temporal cortex (STC), and left MOC. Furthermore, the correlation analysis revealed a significant correlation between neuropsychological scores and fALFF, ReHo, and seed-based FC measured from the regions with significant group differences. Our results demonstrated that alterations of low-frequency oscillations in chronic mTBI could be representative of disruption in emotional circuits, cognitive performance, and recovery in this cohort

    Hemispheric Regional Based Analysis of Diffusion Tensor Imaging and Diffusion Tensor Tractography in Patients with Temporal Lobe Epilepsy and Correlation with Patient outcomes

    Get PDF
    Abstract Imaging in the field of epilepsy surgery remains an essential tool in terms of its ability to identify regions where the seizure focus might present as a resectable area. However, in many instances, an obvious structural abnormality is not visualized. This has created the opportunity for new approaches and imaging innovation in the field of epilepsy, such as with Diffusion Tensor Imaging (DTI) and Diffusion Tensor Tractography (DTT). In this study, we aim to evaluate the use of DTI and DTT as a predictive model in the field of epilepsy, specifically Temporal Lobe Epilepsy (TLE), and correlate their clinical significance with respect to postsurgical outcomes. A hemispheric based analysis was used to compare the tract density, as well as DTI indices of the specific regions of interest from the pathologic hemisphere to the healthy hemisphere in TLE patients. A total of 22 patients with TLE (12 males, 10 females, 22–57 age range) underwent either a craniotomy, Anterior Temporal Lobectomy (ATL), or a less invasive method of Selective Laser Amygdalohippocampectomy (SLAH) and were imaged using 3.0 T Philips Achieva MR scanner. Of the participants, 12 underwent SLAH while 10 underwent ATL. The study was approved by the institutional review board of Thomas Jefferson University Hospital. Informed consent was obtained from all patients. All patients had a diagnosis of TLE according to standard clinical criteria. DTI images were acquired axially in the same anatomical location prescribed for the T1-weighted images. The raw data set consisting of diffusion volumes were first corrected for eddy current distortions and motion artifacts. Various DTI indices such as Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD) were estimated and co-registered to the brain parcellation map obtained by freesurfer. 16 consolidated cortical and subcortical regions were selected as regions of interest (ROIs) by a functional neurosurgeon and DTI values for each ROI were calculated and compared with the corresponding ROI in the opposite hemisphere. Also, track density imaging (TDI) of 68 white matter parcels were generated using fiber orientation distribution (FOD) based deterministic fiber tracking and compared with contralateral side of the brain in each epileptic group: left mesial temporal sclerosis (LMTS) and right MTS (RMTS)). In patients with LMTS, MD and RD values of the left hippocampus decreased significantly using two-tailed t-test (p = 0.03 and p = 0.01 respectively) compared to the right hippocampus. Also, RD showed a marginally significant decrease in left amygdala (p = 0.05). DTT analysis in LMTS shows a marginally significant decrease in the left white matter supramarginal parcel (p = 0.05). In patients with RMTS, FA showed a significant decrease in the ipsilateral mesial temporal lobe (p = 0.02), parahippocampal area (p = 0.03) and thalamus (p = 0.006). RD showed a marginally significant increase in the ipsilateral hippocampus (p = 0.05) and a significant increase in the ipsilateral parahippocampal area (p = 0.03). Also, tract density of the ipsilateral white matter inferior parietal parcel showed a marginally significant increase compared to the contralateral side (p = 0.05). With respect to postsurgical outcomes, we found an association between residual seizures and tract density in five white matter segments including ipsilateral lingual (p = 0.04), ipsilateral temporal pole (p = 0.007), ipsilateral pars opercularis (p = 0.03), ipsilateral inferior parietal (p = 0.04) and contralateral frontal pole (p = 0.04). These results may have the potential to be developed into imaging prognostic markers of postoperative outcomes and provide new insights for why some patients with TLE continue to experience postoperative seizures if pathological/clinical correlates are further confirmed

    Functional Connectivity Correlates of Spiritual Experience

    No full text
    Introduction: There are numerous studies that explore the underlying neurophysiological processes of spiritual and religious experiences. However, there is one method that is yet to be explored: comparing resting brain states with qualitative markers of spirituality. We posit that using this methodology will identify specific brain regions that are neurophysiologically correlated to spiritual and religious practices and experiences. Methods: In order to do so, resting state blood oxygen level dependent magnetic resonance imaging (rsBOLD MRI) was used to obtain resting states for 31 (15M/16F) volunteers ranging from 21 and 82 years (mean 37±23 years). These images were then compared using ROI-to-ROI analysis to scores from the following spirituality measures: Index of Core Spiritual Experiences (INSPIRIT), the Purpose in Life Scale, the Mysticism Scale, the Quest Scale, and Mindful Attention Awareness Scale (MAAS). This was done to isolate particular areas of significance from the Resting State images that would pertain to particular spirituality measures. Results: Particular areas that were identified are the right inferior temporal lobe-default mode network, right fusiform cortex-right lateral visual cortex, and the right inferior temporal lobe and posterior cingulate (p\u3c0.05). These regions correspond to existing literature that delineates them as significant in religious and spiritual practice. Furthermore, the individual functions of these regions also provide support towards these findings. Discussion: Overall, this study provides novel exploration of the functional connectivity correlates of religious and spiritual experiences and identified regions that are of significance and further solidify ROIs outlined by existing literature. Through appropriately identifying the underlying neural correlates of religious and spiritual experiences, these findings will increase our understanding of these practices. And these regions can be appropriately compared when analyzing religious and spiritual practices in relation to other factors such as treatments for mental health

    Development of pediatric spinal cord white matter atlas : preliminary analysis

    No full text

    N-acetyl cysteine administration affects cerebral blood flow as measured by arterial spin labeling MRI in patients with multiple sclerosis.

    Get PDF
    Background: The purpose of this study was to explore if administration of N-acetyl-cysteine (NAC) in patients with multiple sclerosis (MS) resulted in altered cerebral blood flow (CBF) based on Arterial Spin Labeling (ASL) magnetic resonance imaging (MRI). Methods: Twenty-three patients with mild to moderate MS, (17 relapsing remitting and 6 primary progressive) were randomized to either NAC plus standard of care (N = 11), or standard of care only (N = 12). The experimental group received NAC intravenously (50 mg/kg) once per week and orally (500mg 2x/day) the other six days. Patients in both groups were evaluated initially and after 2 months (of receiving the NAC or waitlist control) with ASL MRI to measure CBF. Clinical symptom questionnaires were also completed at both time points. Results: The CBF data showed significant differences in several brain regions including the pons, midbrain, left temporal and frontal lobe, left thalamus, right middle frontal lobe and right temporal/hippocampus (p \u3c 0.001) in the MS group after treatment with NAC, when compared to the control group. Self-reported scores related to cognition and attention were also significantly improved in the NAC group as compared to the control group. Conclusions: The results of this study suggest that NAC administration alters resting CBF in MS patients, and this is associated with qualitative improvements in cognition and attention. Given these findings, large scale efficacy studies will be of value to determine the potential clinical impact of NAC over the course of illness in patients with MS, as well as the most effective dosages and differential effects across subpopulations
    corecore