3 research outputs found
Integrated spatial multiplexing of heralded single photon sources
The non-deterministic nature of photon sources is a key limitation for single
photon quantum processors. Spatial multiplexing overcomes this by enhancing the
heralded single photon yield without enhancing the output noise. Here the
intrinsic statistical limit of an individual source is surpassed by spatially
multiplexing two monolithic silicon correlated photon pair sources,
demonstrating a 62.4% increase in the heralded single photon output without an
increase in unwanted multi-pair generation. We further demonstrate the
scalability of this scheme by multiplexing photons generated in two waveguides
pumped via an integrated coupler with a 63.1% increase in the heralded photon
rate. This demonstration paves the way for a scalable architecture for
multiplexing many photon sources in a compact integrated platform and achieving
efficient two photon interference, required at the core of optical quantum
computing and quantum communication protocols.Comment: 10 pages, 3 figures, comments welcom
Advanced Integrated Microwave Signal Processing with Giant On-Chip Brillouin Gain
Processing of microwave signals using photonics has several key advantages for applications in wireless communications. However, to bring photonic-based microwave signal processing to the mainstream requires a reduction of the form factor. Integration is a route for achieving high-performance, low-cost, and small-footprint microwave photonic devices. A high on-chip stimulated Brillouin scattering (SBS) gain is essential for synthesizing several key functionalities for advanced integrated microwave signal processing. We have optimized our on-chip SBS platform to achieve a record on-chip gain of 52 dB. In this paper, we discuss the implications of this giant gain from the viewpoint of new enabled technologies. The giant gain can be distributed over wide frequencies, which can be exploited for the realization of reconfigurable microwave bandpass, bandstop, and multiband filters. High gain also enables the demonstration of low-threshold on-chip lasers, which can be of relevance for a low-noise radio-frequency signal generation. These wide ranges of functionalities are made possible by the breakthrough on-chip gain makes Brillouin-based microwave photonic signal processing a promising approach for real-world implementation in the near future
Nonlinear photonics : quantum state generation and manipulation
Reliable sources of photons are imperative to the development of photonic quantum technologies. I will review the use of ultra-compact slow light photonic crystal structures to create heralded single photon sources using nonlinear processes.2 page(s