6 research outputs found

    Process hazard analysis of gasification process by using oil palm empty fruit bunch as feedstock

    Get PDF
    Production of hydrogen rich gas from the gasification of biomass to replace fossil fuels has become a common interest worldwide. One of the potential biomass in Malaysia to produce hydrogen rich gas is empty fruit bunch (EFB) from oil palm (Elaeis guineensis). Numerous researchers have carried out studies on hydrogen production using biomass but there are limited researches on the hazards analysis incorporated in the gasification process of EFB. This paper presents the hazards identification and risk reduction of the gasification process by using EFB as a feedstock. The research aims to incorporate safety needs to the gasification process of EFB for safe operation in the future. The process hazards analysis has been carried out on process unit namely fire burner, feeding hopper, fluidised bed reactor and cyclone. The potential hazard, possible causes, risk and consequences of the process unit were analysed. Based on the analysis, the major hazards identified in the process are overpressure and over temperature followed by the release of hydrogen gases. Safe by design is the most effective risk reduction strategy since it can eliminate the hazards from the source by having inherently safer design of the hydrogen process plant

    Lessons learned from process equipment failures in the chemical process industry

    Get PDF
    Process equipment failures play significant roles in most accidents that occur and recur in the chemical process industry (CPI). In this study, 50 equipment comprehensive accident investigation reports, extracted from the U.S. Chemical Safety and Hazard Investigation Board (CSB) and U.S. National Transportation Safety Board (NTSB) were analyzed to generate lessons learned. Based on the analysis, the synergy between major hazards i.e. fire, explosion, and toxic release has resulted in catastrophic accidents in the CPI. The emphasis on procedural equipment failure prevention does not provide sufficient hierarchy of controls in the CPI. Balance and integrated accident prevention is required to solve human unreliability that often leads to improper problem-solving, inappropriate actions, and ill-timed responses. To minimize losses, facilities and equipment should be designed and prepared for the worst-case scenario. Moreover, occurrence and recurrence of the accidents could be prevented using inclusive and updated communication systems through cooperation between various governmental agencies, industry players, and the public to disseminate lessons learned and promote safety in the industry

    Hydrogen gas production from gasification of oil palm empty fruit bunch (EFB) in a fluidized bed reactor

    Get PDF
    Malaysia is one of the largest producers of palm oil and this industry plays an important role in Malaysia economic growth. As this industry grows larger, a significant amount of oil palm waste is generated, creating the problem of overloading biomass waste. Since the oil palm waste has many significant uses such as empty fruit bunches (EFB), the interest in production of hydrogen gas as the renewable energy from EFB also increases. The most common and favorable thermochemical processes to produce the hydrogen gas is gasification process in fluidized bed reactor. Regardless of tremendous experimental studies done on effectiveness of using EFB for production of hydrogen, the process implementation in industry is still discouraging. This is due to lack of proven technology and high capital cost of investment. In this study, a computational modeling was developed for EFB gasification in fluidized bed gasifier using the ASPEN PLUS simulator (v. 8.8) to optimize the gasification temperature, pressure and to study the different of chemical behavior. The results indicated that increase in temperature will increases the production of hydrogen and enhances carbon conversion efficiency. The optimum temperature and pressure was 850 °C and 1.035 bar respectively. The result shows that the char was removed significantly after several gas cleaning process. The final product for purified hydrogen gas is 14.5 kg/hr which is around 21% of hydrogen yield. Based on the result, it indicates that EFB has a potential to be used as a source of energy in a future

    Process development of oil palm empty fruit bunch gasification by using fluidised bed reactor for hydrogen gas production

    Get PDF
    Hydrogen can store and deliver usable energy, but it does not typically exist by itself in nature and must be produced from compounds that contain it such as biomass. Hydrogen can be used as fuel which produce from gasification process that used renewable sources as feedstock. Large amount of empty fruit bunch (EFB) has been produced in Malaysia and yet has no specific used in large quantity and it is being incinerated or used as landfill material dumped in the plantation. These situations have led to increased CO2 and other greenhouse gas (GHG) emissions in the atmosphere. During preliminary study, it shows that there are very limited studies being done in the process design development of the hydrogen production by using EFB from oil palm. Despite of tremendous experimental studies done on the effectiveness of using EFB for production of hydrogen, the process implementation in industry is still discouraging. This is due to lack of proven technology and high capital cost of investment. In this study, the drying, gasification and purification unit operations were modelled in Aspen Plus simulator for production of pure hydrogen gas and char was removed significantly after several gas cleaning processes. The final product for purified hydrogen gas is 12.3 t/h which is 16.3 % of hydrogen gas produced from the total EFB feedstock. Based on the result, the optimum temperature and pressure for gasification process is 850 °C and 1 atm respectively. Since, there is not much research have been carried out on process design of hydrogen production process by using EFB as feedstock, the understanding towards this topic can be prolonged

    Occupational safety and health assessment in metal industry within small and medium enterprise

    Get PDF
    According to annual report from the Social Security Organization (SOCSO) between years 2009 and 2011, metal industry has the highest reported number of accidents compared to the other manufacturing industry in small and medium enterprises (SMEs). Therefore, the aim of this study is to investigate the actual causes of problems that lead to the accidents involving metal industries within SMEs. In this study, checklist through site visits has been used to collect the data. The overall result reveals that the main causes of accident are due to organization failure, human factor, machine failure and surrounding environment

    An analysis of major accident in the US chemical safety board (CSB) database

    No full text
    Accident rate in the chemical process industry (CPI) is high and causing loss of lives, massive property and environmental damage. Continuous improvement on accident knowledge and understanding is vital for process safety. Thus, an initiative to study the latest trends of accident was taken by analyzing 75 completed investigation reports of US Chemical Safety and Hazard Investigation Board (CSB) accident cases occurred in CPI from 1995 to 2011. The result of the analysis shows that the CPI accepted the concept of Prevention trough Design (PtD). However, 71% of accident cases are similar due to incorrect corrective action taken
    corecore