1,227 research outputs found
AdS/CFT correspondence via R-current correlation functions revisited
Motivated by realizing open/closed string duality in the work by Gopakumar
[Phys. Rev. D70:025009,2004], we study two and three-point correlation
functions of R-current vector fields in N=4 super Yang-Mills theory. These
correlation functions in free field limit can be derived from the worldline
formalism and written as heat kernel integrals in the position space. We show
that reparametrizing these integrals converts them to the expected AdS
supergravity results which are known in terms of bulk to boundary propagator.
We expect that this reparametrization corresponds to transforming open string
moduli parameterization to the closed string ones.Comment: 23 pages, v2: calculations clarified, references added, v3: sections
re-arranged with more explanations, 4 figures and an appendix adde
On the distribution of the maximum of sums of a sequence of independent and identically distributed random variables
The authors find in terms of generating functions the distribution of the maximum of sums of independent and identically distributed random variables with no negative jumps different from −1.Publisher's Versio
Benchmark calculations for elastic fermion-dimer scattering
We present continuum and lattice calculations for elastic scattering between
a fermion and a bound dimer in the shallow binding limit. For the continuum
calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to
determine the scattering length and effective range parameter to high
precision. For the lattice calculation we use the finite-volume method of
L\"uscher. We take into account topological finite-volume corrections to the
dimer binding energy which depend on the momentum of the dimer. After
subtracting these effects, we find from the lattice calculation kappa a_fd =
1.174(9) and kappa r_fd = -0.029(13). These results agree well with the
continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained
from the STM equation. We discuss applications to cold atomic Fermi gases,
deuteron-neutron scattering in the spin-quartet channel, and lattice
calculations of scattering for nuclei and hadronic molecules at finite volume.Comment: 16 pages, 5 figure
Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets
The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties
Luminescent hyperbolic metasurfaces.
When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells
High-resolution wave dynamics in the lower solar atmosphere
The magnetic and convective nature of the Sun's photosphere provides a unique
platform from which generated waves can be modelled, observed, and interpreted
across a wide breadth of spatial and temporal scales. As oscillations are
generated in-situ or emerge through the photospheric layers, the interplay
between the rapidly evolving densities, temperatures, and magnetic field
strengths provides dynamic evolution of the embedded wave modes as they
propagate into the tenuous solar chromosphere. A focused science team was
assembled to discuss the current challenges faced in wave studies in the lower
solar atmosphere, including those related to spectropolarimetry and radiative
transfer in the optically thick regions. Following the Theo Murphy
international scientific meeting held at Chicheley Hall during February 2020,
the scientific team worked collaboratively to produce 15 independent
publications for the current Special Issue, which are introduced here.
Implications from the current research efforts are discussed in terms of
upcoming next-generation observing and high performance computing facilities.Comment: 16 pages, 4 figures, Introduction to the "High-resolution wave
dynamics in the lower solar atmosphere" special issue of the Philosophical
Transactions A: https://walsa.team/u/rst
Load-settlement modelling of axially loaded drilled shafts using CPT-based recurrent neural networks
The design of pile foundations requires good estimation of the pile load-carrying capacity and settlement. Design for bearing capacity and design for settlement have been traditionally carried out separately. However, soil resistance and settlement are influenced by each other, and the design of pile foundations should thus consider the bearing capacity and settlement inseparably. This requires the full load–settlement response of piles to be well predicted. However, it is well known that the actual load–settlement response of pile foundations can be obtained only by load tests carried out in situ, which are expensive and time-consuming. In this paper, recurrent neural networks (RNNs) were used to develop a prediction model that can resemble the full load–settlement response of drilled shafts (bored piles) subjected to axial loading. The developed RNN model was calibrated and validated using several in situ full-scale pile load tests, as well as cone penetration test (CPT) data. The results indicate that the developed RNN model has the ability to reliably predict the load–settlement response of axially loaded drilled shafts and can thus be used by geotechnical engineers for routine design practice
Recommended from our members
The Connected Intensive Care Unit Patient: Exploratory Analyses and Cohort Discovery From a Critical Care Telemedicine Database.
Background: Many intensive care units (ICUs) utilize telemedicine in response to an expanding critical care patient population, off-hours coverage, and intensivist shortages, particularly in rural facilities. Advances in digital health technologies, among other reasons, have led to the integration of active, well-networked critical care telemedicine (tele-ICU) systems across the United States, which in turn, provide the ability to generate large-scale remote monitoring data from critically ill patients. Objective: The objective of this study was to explore opportunities and challenges of utilizing multisite, multimodal data acquired through critical care telemedicine. Using a publicly available tele-ICU, or electronic ICU (eICU), database, we illustrated the quality and potential uses of remote monitoring data, including cohort discovery for secondary research. Methods: Exploratory analyses were performed on the eICU Collaborative Research Database that includes deidentified clinical data collected from adult patients admitted to ICUs between 2014 and 2015. Patient and ICU characteristics, top admission diagnoses, and predictions from clinical scoring systems were extracted and analyzed. Additionally, a case study on respiratory failure patients was conducted to demonstrate research prospects using tele-ICU data. Results: The eICU database spans more than 200 hospitals and over 139,000 ICU patients across the United States with wide-ranging clinical data and diagnoses. Although mixed medical-surgical ICU was the most common critical care setting, patients with cardiovascular conditions accounted for more than 20% of ICU stays, and those with neurological or respiratory illness accounted for nearly 15% of ICU unit stays. The case study on respiratory failure patients showed that cohort discovery using the eICU database can be highly specific, albeit potentially limiting in terms of data provenance and sparsity for certain types of clinical questions. Conclusions: Large-scale remote monitoring data sources, such as the eICU database, have a strong potential to advance the role of critical care telemedicine by serving as a testbed for secondary research as well as for developing and testing tools, including predictive and prescriptive analytical solutions and decision support systems. The resulting tools will also inform coordination of care for critically ill patients, intensivist coverage, and the overall process of critical care telemedicine.Office of Research, Discovery, Innovation at the University of Arizona; National Science Foundation [1838745]; National Heart, Lung, and Blood Institute of the National Institutes of Health [5T32HL007955]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …