1,775 research outputs found
Near-Extreme Black Holes and the Universal Relaxation Bound
A fundamental bound on the relaxation time \tau of a perturbed
thermodynamical system has recently been derived, \tau \geq \hbar/\pi T, where
is the system's temperature. We demonstrate analytically that black holes
saturate this bound in the extremal limit and for large values of the azimuthal
number m of the perturbation field.Comment: 2 Pages. Submitted to PRD on 5/12/200
The Quantized Hall Insulator: A New Insulator in Two-Dimensions
Quite generally, an insulator is theoretically defined by a vanishing
conductivity tensor at the absolute zero of temperature. In classical
insulators, such as band insulators, vanishing conductivities lead to diverging
resistivities. In other insulators, in particular when a high magnetic field
(B) is added, it is possible that while the magneto-resistance diverges, the
Hall resistance remains finite, which is known as a Hall insulator. In this
letter we demonstrate experimentally the existence of another, more exotic,
insulator. This insulator, which terminates the quantum Hall effect series in a
two-dimensional electron system, is characterized by a Hall resistance which is
approximately quantized in the quantum unit of resistance h/e^2. This insulator
is termed a quantized Hall insulator. In addition we show that for the same
sample, the insulating state preceding the QHE series, at low-B, is of the HI
kind.Comment: 4 page
Large-scale cell-type-specific imaging of protein synthesis in a vertebrate brain
Despite advances in methods to detect protein synthesis, it has not been possible to measure endogenous protein synthesis levels in vivo in an entire vertebrate brain. We developed a transgenic zebrafish line that allows for cell-type-specific labeling and imaging of nascent proteins in the entire animal. By replacing leucine with glycine in the zebrafish MetRS-binding pocket (MetRS-L270G), we enabled the cell-type-specific incorporation of the azide-bearing non-canonical-amino-acid azidonorleucine (ANL) during protein synthesis. Newly synthesized proteins were then labeled via 'click chemistry'. Using a Gal4-UAS-ELAV3 line to express MetRS-L270G in neurons, we measured protein synthesis intensities across the entire nervous system. We visualized endogenous protein synthesis and demonstrated that seizure-induced neural activity results in enhanced translation levels in neurons. This method allows for robust analysis of endogenous protein synthesis in a cell-type-specific manner, in vivo at single-cell resolution
Time-Dependent Random Walks and the Theory of Complex Adaptive Systems
Motivated by novel results in the theory of complex adaptive systems, we
analyze the dynamics of random walks in which the jumping probabilities are
{\it time-dependent}. We determine the survival probability in the presence of
an absorbing boundary. For an unbiased walk the survival probability is
maximized in the case of large temporal oscillations in the jumping
probabilities. On the other hand, a random walker who is drifted towards the
absorbing boundary performs best with a constant jumping probability. We use
the results to reveal the underlying dynamics responsible for the phenomenon of
self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure
The Nature of the Hall Insulator
We have conducted an experimental study of the linear transport properties of
the magnetic-field induced insulating phase which terminates the quantum Hall
(QH) series in two dimensional electron systems. We found that a direct and
simple relation exists between measurements of the longitudinal resistivity,
, in this insulating phase and in the neighboring QH phase. In
addition, we find that the Hall resistivity, , can be quantized in
the insulating phase. Our results indicate that a close relation exists between
the conduction mechanism in the insulator and in the QH liquid.Comment: RevTeX, 4 pages, 4 figure
Signatures of particle collisions near extreme black holes
Finite-energy particles in free fall can collide with diverging
center-of-mass energy near rapidly rotating black holes. What are the most
salient observational signatures of this remarkable geometric effect? Here we
revisit the problem from the standpoint of the near-horizon extreme Kerr
geometry, where these collisions naturally take place. It is shown that the
ingoing particle kinematics admits a simple, universal form. Given a scattering
cross section, determination of emission properties is reduced to evaluation of
particular integrals on the sky of a near-horizon orbiting particle. We
subsequently apply this scheme to the example of single-photon bremsstrahlung,
substantiating past results which indicate that ejected particles are
observable, but their energies are bounded by the rest masses of the colliding
particles. Our framework is readily applicable for any scattering process.Comment: 11 pages, 4 figure
The quantized Hall effect in the presence of resistance fluctuations
We present an experimental study of mesoscopic, two-dimensional electronic
systems at high magnetic fields. Our samples, prepared from a low-mobility
InGaAs/InAlAs wafer, exhibit reproducible, sample specific, resistance
fluctuations. Focusing on the lowest Landau level we find that, while the
diagonal resistivity displays strong fluctuations, the Hall resistivity is free
of fluctuations and remains quantized at its value, . This is
true also in the insulating phase that terminates the quantum Hall series.
These results extend the validity of the semicircle law of conductivity in the
quantum Hall effect to the mesoscopic regime.Comment: Includes more data, changed discussio
Near-Perfect Correlation of the Resistance Components of Mesoscopic Samples at the Quantum Hall Regime
We study the four-terminal resistance fluctuations of mesoscopic samples near
the transition between the and the quantum Hall states. We
observe near-perfect correlations between the fluctuations of the longitudinal
and Hall components of the resistance. These correlated fluctuations appear in
a magnetic-field range for which the two-terminal resistance of the samples is
quantized. We discuss these findings in light of edge-state transport models of
the quantum Hall effect. We also show that our results lead to an ambiguity in
the determination of the width of quantum Hall transitions.Comment: As publishe
- …