4 research outputs found

    Time Complexity of Color Camera Depth Map Hand Edge Closing Recognition Algorithm

    Get PDF
    The objective of this paper is to calculate the time complexity of the colored camera depth map hand edge closing algorithm of the hand gesture recognition technique. It has been identified as hand gesture recognition through human-computer interaction using color camera and depth map technique, which is used to find the time complexity of the algorithms using 2D minima methods, brute force, and plane sweep. Human-computer interaction is a very much essential component of most people's daily life. The goal of gesture recognition research is to establish a system that can classify specific human gestures and can make its use to convey information for the device control. These methods have different input types and different classifiers and techniques to identify hand gestures. This paper includes the algorithm of one of the hand gesture recognition “Color camera depth map hand edge recognition” algorithm and its time complexity and simulation on MATLAB

    Security and Countermeasures Wireless Communication Algorithm with Penetration Testing

    No full text
    The communication algorithm security, in general, is a pending issue that has only recently become aware. In wireless communication algorithms, this need is more obvious, by its characteristics, and is part of the design of Wi-Fi communication algorithms. The biggest security problem of Wi-Fi communication algorithms is given by its spatial dispersion. It is not limited to an area, a cable or optical fiber, or has specific access points or connection, but it expands and is accessible from any point within its coverage. This makes it very vulnerable to wireless communication algorithms because of the physical security of this communication algorithm is difficult to secure

    Cloud-Based Breast Cancer Prediction Empowered with Soft Computing Approaches

    No full text
    The developing countries are still starving for the betterment of health sector. The disease commonly found among the women is breast cancer, and past researches have proven results that if the cancer is detected at a very early stage, the chances to overcome the disease are higher than the disease treated or detected at a later stage. This article proposed cloud-based intelligent BCP-T1F-SVM with 2 variations/models like BCP-T1F and BCP-SVM. The proposed BCP-T1F-SVM system has employed two main soft computing algorithms. The proposed BCP-T1F-SVM expert system specifically defines the stage and the type of cancer a person is suffering from. Expert system will elaborate the grievous stages of the cancer, to which extent a patient has suffered. The proposed BCP-SVM gives the higher precision of the proposed breast cancer detection model. In the limelight of breast cancer, the proposed BCP-T1F-SVM expert system gives out the higher precision rate. The proposed BCP-T1F expert system is being employed in the diagnosis of breast cancer at an initial stage. Taking different stages of cancer into account, breast cancer is being dealt by BCP-T1F expert system. The calculations and the evaluation done in this research have revealed that BCP-SVM is better than BCP-T1F. The BCP-T1F concludes out the 96.56 percentage accuracy, whereas the BCP-SVM gives accuracy of 97.06 percentage. The above unleashed research is wrapped up with the conclusion that BCP-SVM is better than the BCP-T1F. The opinions have been recommended by the medical expertise of Sheikh Zayed Hospital Lahore, Pakistan, and Cavan General Hospital, Lisdaran, Cavan, Ireland

    IoMT Cloud-Based Intelligent Prediction of Breast Cancer Stages Empowered With Deep Learning

    No full text
    Breast cancer is often a fatal disease that has a substantial impact on the female mortality rate. Rapidly spreading breast cancer is due to the abnormal growth of malignant cells in the breast. Early detection of breast cancer can increase treatment opportunities and patient survival rates. Various screening methods with computer-aided detection systems have been developed for the effective diagnosis and treatment of breast cancer. Image data plays an important role in the medical and health industry. Features are extracted from image datasets through deep learning, as deep learning techniques extract features more accurately and rapidly than other existing methods. Deep learning effectively assists existing methods, such as mammogram screening and biopsy, in examining and diagnosing breast cancer. This paper proposes an Internet of Medical Things (IoMT) cloud-based model for the intelligent prediction of breast cancer stages. The proposed model is employed to detect breast cancer and its stages. The experimental results demonstrate 98.86% and 97.81% accuracy for the training and validation phases, respectively. In addition, they demonstrate accuracies of 99.69%, 99.32%, 98.96%, and 99.32% for detecting ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma. The results of the proposed intelligent prediction of breast cancer stages empowered with the deep learning (IPBCS-DL) model exhibits higher accuracy than existing state-of-the-art methods, indicating its potential to lower the breast cancer mortality rate
    corecore