5 research outputs found

    Activity Recognition for Smart Building Application Using Complex Event Processing Approach

    Get PDF
    Activity recognition has become one of the most interesting and challenging subjects in performing surveillance or monitoring of smart building system. Although there are several systems already available in the market, limitations and several unresolved issues remain, especially when it involves complex engineering applications. As such, activity recognition is purposely incorporated in the smart system to detect simple and complex events that happen in the building. In all existing event detections, the complex event processing (CEP) approach has been used for the detection of complex events. The CEP is capable of abstracting meaningful events from various and heterogeneous data sources, filtering and processing both simple and complex events, as well as, producing fast mitigation action based on specific scenarios. The work reported in this paper intends to explain in detail on the development of activity recognition application using CAISER™ and NESPER© platform as well as the complex event detection that uses the CEP approach. In assessing the system performance, Matthew Coefficient Correlation (MCC) has been used as the main performance parameter.  Results obtained showed that the Temporal Constraint Template Match Detector (TCD) is more accurate, stable and better in complex event detection compared to NESPER© detector

    Suspicious loitering detection from annotated CCTV feed using CEP based approach

    Get PDF
    Smart Surveillance System is a critical system that enables automated detection of anomalous activities from live CCTV feed. The main challenge that needs to be addressed by the Smart Surveillance System is the ability to understand and detect the activities that are currently occurring within the CCTV feed. Suspicious loitering is considered one of the anomalous activities that precede unwanted events, such as break-ins, burglary, and robbery. In this research, the Complex Event Processing (CEP) approach was selected as the system development approach for developing a Smart Surveillance System. Four types of similarity search-based event detectors, namely the Multi-Layered Event Detector for General Application (MEGA), Temporally Constrained Template Match Detector (TCD), Sliding Window Detector (SWD), and Weighted Sliding Window Detector (WSWD) were tested and evaluated to determine the best suspicious loitering event detector to be used in the Smart Surveillance System. The input data to the detectors comprised manually annotated real CCTV feed which was subjected to three noise conditions: (i) no-noise (0% noise) annotation, (ii) 25% noisy annotation and (iii) 46.8% noisy annotation. The 46.8% noisy annotation is assumed to reflect the real ambient operating condition of the Smart Surveillance System; while the no-noise condition was assumed to reflect the perfect CCTV feed acquisition and annotation process. The performance of the detectors was measured in terms of sensitivity, specificity, detection accuracy, and the area under the Receiver’s Operating Curve (ROC). The results obtained showed that MEGA is the best overall detector for suspicious loitering detection in ambient operating conditions with detection accuracy of 97.20% and area under ROC curve of 0.6117

    Activity Recognition for Smart Building Application Using Complex Event Processing Approach

    No full text
    Activity recognition has become one of the most interesting and challenging subjects in performing surveillance or monitoring of smart building system. Although there are several systems already available in the market, limitations and several unresolved issues remain, especially when it involves complex engineering applications. As such, activity recognition is purposely incorporated in the smart system to detect simple and complex events that happen in the building. In all existing event detections, the complex event processing (CEP) approach has been used for the detection of complex events. The CEP is capable of abstracting meaningful events from various and heterogeneous data sources, filtering and processing both simple and complex events, as well as, producing fast mitigation action based on specific scenarios. The work reported in this paper intends to explain in detail on the development of activity recognition application using CAISER™ and NESPER© platform as well as the complex event detection that uses the CEP approach. In assessing the system performance, Matthew Coefficient Correlation (MCC) has been used as the main performance parameter.  Results obtained showed that the Temporal Constraint Template Match Detector (TCD) is more accurate, stable and better in complex event detection compared to NESPER© detector

    ExSIDE: Component Based Object Oriented Expert System’s Integrated Development Environment

    No full text
    This paper describes the design and development of a component-based object oriented Expert System's Integrated Development Environment (ExSIDE).  It is integrated with (i) a user-friendly manual and automated knowledge acquisition and management tool (ExSIDE_KAMT);(ii) an independent and customizable runtime module (ExSIDE_RTM); (iii) an object-oriented in-process Component Object Model (COM)-based inference engine (ExSIDE_IE); (iv) an object-oriented out-of-process COM-based inference engine (ExSIDE_IESvr); (v) and a PHP based inference engine (ExSIDE_PHP). ExSIDE_RTM can function independently as an Expert System Shell (ESS) and helps user to develop Expert Systems rapidly.  ExSIDE_IE and ExSIDE_IES can be integrated with COM-supporting general purpose and scientific application development tools such as variants of C/C++/C#, BASIC (Visual BASIC®, REALbasic®), Java, MATLAB®, LabVIEW®, and Mathematica® to develop more advanced Expert Systems. Finally, ExSIDE_IE and ExSIDE_PHP can be used with Active Server Pages (ASP) and PHP technologies to generate web based Expert Systems. The unique framework of the ExSIDE enables rapid development of Expert Systems' on PC and web for technical and non-technical users. The overall system was developed successfully, and its usability was demonstrated via five unique Expert Systems case studies discussed in this paper

    Smart Pump Operation Monitoring And Notification (PuMa) Via Telegram Social Messaging Application

    No full text
    Water supply system contains hydraulic components to supply water. The pumps are an important part in water distribution system and need to be well maintained for most of the time. The failure of pump operating system will result in the water shortage inside water tank. This phenomenon might occur due to the tripped pump and power. This paper proposed a remote monitoring and notification system applied in the pump house with the used of Complex Event Processing tools. Whereas, the notification system that act as an output adapter uses a Telegram Social Messaging application. The study is about how fast the notification system between using SMS and Telegram as an output adapter in the pump operation
    corecore