115 research outputs found

    Impacts of biofilms on the conversion of cellulose

    Get PDF
    Lignocellulose is a widely available renewable carbon source and a promising feedstock for the production of various chemicals in biorefineries. However, its recalcitrant nature is a major hurdle that must be overcome to enable economic conversion processes. Deconstruction of lignocellulose is part of the global carbon cycle, and efficient microbial degradation systems have evolved that might serve as models to improve commercial conversion processes. Biofilms—matrix encased, spatially organized clusters of microbial cells and the predominating lifestyle in nature—have been recognized for their essential role in the degradation of cellulose in nature, e.g., in soils or in the digestive tracts of ruminant animals. Cellulolytic biofilms allow for a high concentration of enzymes at the boundary layer between the solid substrate and the liquid phase and the more complete capture of hydrolysis products directly at the hydrolysis site, which is energetically favorable. Furthermore, enhanced expression of genes for carbohydrate active enzymes as a response to the attachment on solid substrate has been demonstrated for cellulolytic aerobic fungi and anerobic bacteria. In natural multispecies biofilms, the vicinity of different microbial species allows the creation of efficient food webs and synergistic interactions thereby, e.g., avoiding the accumulation of inhibiting metabolites. In this review, these topics are discussed and attempts to realize the benefits of biofilms in targeted applications such as the consolidated bioprocessing of lignocellulose are highlighted

    Engineering of ecological niches to create stable artificial consortia for complex biotransformations

    Get PDF
    The design of controllable artificial microbial consortia has attracted considerable interest in recent years to capitalize on the inherent advantages in comparison to monocultures such as the distribution of the metabolic burden by division of labor, the modularity and the ability to convert complex substrates. One promising approach to control the consortia composition, function and stability is the provision of defined ecological niches fitted to the specific needs of the consortium members. In this review, we discuss recent examples for the creation of metabolic niches by biological engineering of resource partitioning and syntrophic interactions. Moreover, we introduce a complementing process engineering approach to provide defined spatial niches with differing abiotic conditions (e.g. O2, T, light) in stirred tank reactors harboring biofilms. This enables the co-cultivation of microorganisms with non-overlapping abiotic requirements and the control of the strain ratio in consortia characterized by substrate competition

    Ariel - Volume 8 Number 3

    Get PDF
    Executive Editor James W. Lockard, Jr. Business Manager Neeraj K. Kanwal University News Richard J . Perry World News Doug Hiller Opinions Elizabeth A. McGuire Features Patrick P. Sokas Sports Desk Shahab S. Minassian Managing Editor Edward H. Jasper Managing Associate Brenda Peterson Photography Editor Robert D. Lehman. Jr. Graphics Christine M. Kuhnl

    A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose.

    Get PDF
    Microbial consortia are a promising alternative to monocultures of genetically modified microorganisms for complex biotransformations. We developed a versatile consortium-based strategy for the direct conversion of lignocellulose to short-chain fatty acids, which included the funneling of the lignocellulosic carbohydrates to lactate as a central intermediate in engineered food chains. A spatial niche enabled in situ cellulolytic enzyme production by an aerobic fungus next to facultative anaerobic lactic acid bacteria and the product-forming anaerobes. Clostridium tyrobutyricum, Veillonella criceti, or Megasphaera elsdenii were integrated into the lactate platform to produce 196 kilograms of butyric acid per metric ton of beechwood. The lactate platform demonstrates the benefits of mixed cultures, such as their modularity and their ability to convert complex substrates into valuable biochemicals

    Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium

    Get PDF
    Consolidated bioprocessing (CBP) of lignocellulosic feedstocks to platform chemicals requires complex metabolic processes, which are commonly executed by single genetically engineered microorganisms. Alternatively, synthetic consortia can be employed to compartmentalize the required metabolic functions among different specialized microorganisms as demonstrated in this work for the direct production of lactic acid from lignocellulosic biomass. We composed an artificial cross‐kingdom consortium and co‐cultivated the aerobic fungus Trichoderma reesei for the secretion of cellulolytic enzymes with facultative anaerobic lactic acid bacteria. We engineered ecological niches to enable the formation of a spatially structured biofilm. Up to 34.7 gL−1 lactic acid could be produced from 5% (w/w) microcrystalline cellulose. Challenges in converting pretreated lignocellulosic biomass include the presence of inhibitors, the formation of acetic acid and carbon catabolite repression. In the CBP consortium hexoses and pentoses were simultaneously consumed and metabolic cross‐feeding enabled the in situ degradation of acetic acid. As a result, superior product purities were achieved and 19.8 gL−1 (85.2% of the theoretical maximum) of lactic acid could be produced from non‐detoxified steam‐pretreated beech wood. These results demonstrate the potential of consortium‐based CBP technologies for the production of high value chemicals from pretreated lignocellulosic biomass in a single step

    Ariel - Volume 8 Number 2

    Get PDF
    Executive Editor James W. Lockard , Jr. Issue Editor Doug Hiller Business Manager Neeraj K. Kanwal University News Richard J. Perry World News Doug Hiller Opinions Elizabeth A. McGuire Features Patrick P. Sokas Sports Desk Shahab S. Minassian Managing Editor Edward H. Jasper Managing Associate Brenda Peterson Photography Editor Robert D. Lehman, Jr. Graphics Christine M. Kuhnl

    Selectivity control during the single-step conversion of aliphatic carboxylic acids to linear olefins

    Get PDF
    We have studied the single-step catalytic conversion of biomass-derived aliphatic carboxylic acids to linear olefins via tandem hydrogenation/dehydration reactions. Hexanoic acid was converted to a mixture of hexenes (92.0% selectivity) over silica–alumina supported Cu nanoparticles. Remarkably, we observed a rapid selectivity switch to 99.8% hexane once carboxylic acids were fully consumed, with similar results using butanoic acid derived from biomass using consolidated bioprocessing. Based on intermediate, desorption, and in situ spectroscopy studies, we propose that the presence of a small amount of carboxylic acid on the catalyst surface leads to a dramatic decrease in overhydrogenation of olefins

    An analysis of consumer protection for gamblers across different online gambling operators in Ireland: a descriptive study

    Get PDF
    The aim of the present study was to evaluate the responsible gambling tools which are available to online gamblers at Irish online gambling websites. The present study used a similar methodology to a recent study carried out on the world’s most popular websites (Bonello and Griffiths Gaming Law Review and Economics, 21, 278–285, 2017), where 50 of the most advertised online gambling websites were evaluated in relation to their responsible gambling (RG) practices. The present study evaluated 39 gambling websites with either a “.ie” or “.com/ie” domain. Each website was evaluated by checking for a number of RG practices, including presence of a dedicated RG page; age verification; access to gambling account history; the availability of RG tools, such as limit setting facilities and exclusion settings; and links to limit-setting options on the deposit page. Descriptive statistics were then performed on the results from each website. Of the 39 online gambling operators identified, 22 redirected gamblers to a “.com” domain, while 17 operators remained as a “.ie” domain. Thirty-five websites (89.7%) visited had a dedicated RG page. Responsible gambling features were evaluated and demonstrated to be available in an inconsistent manner across online gambling websites. Irish websites were shown to perform poorly in comparison with non-Irish counterparts in the provision of RG tools. The researchers of the present study are not aware of any similar studies conducted to date in Ireland
    corecore