152 research outputs found

    Multi-Modal Deep Learning to Understand Vision and Language

    Get PDF
    Developing intelligent agents that can perceive and understand the rich visual world around us has been a long-standing goal in the field of artificial intelligence. In the last few years, significant progress has been made towards this goal and deep learning has been attributed to recent incredible advances in general visual and language understanding. Convolutional neural networks have been used to learn image representations while recurrent neural networks have demonstrated the ability to generate text from visual stimuli. In this thesis, we develop methods and techniques using hybrid convolutional and recurrent neural network architectures that connect visual data and natural language utterances. Towards appreciating these methods, this work is divided into two broad groups. Firstly, we introduce a general purpose attention mechanism modeled using a continuous function for video understanding. The use of an attention based hierarchical approach along with automatic boundary detection advances state-of-the-art video captioning results. We also develop techniques for summarizing and annotating long videos. In the second part, we introduce architectures along with training techniques to produce a common connection space where natural language sentences are efficiently and accurately connected with visual modalities. In this connection space, similar concepts lie close, while dissimilar concepts lie far apart, irrespective` of their modality. We discuss four modality transformations: visual to text, text to visual, visual to visual and text to text. We introduce a novel attention mechanism to align multi-modal embeddings which are learned through a multi-modal metric loss function. The common vector space is shown to enable bidirectional generation of images and text. The learned common vector space is evaluated on multiple image-text datasets for cross-modal retrieval and zero-shot retrieval. The models are shown to advance the state-of-the-art on tasks that require joint processing of images and natural language

    A Multi-temporal fusion-based approach for land cover mapping in support of nuclear incident response

    Get PDF
    An increasingly important application of remote sensing is to provide decision support during emergency response and disaster management efforts. Land cover maps constitute one such useful application product during disaster events; if generated rapidly after any disaster, such map products can contribute to the efficacy of the response effort. In light of recent nuclear incidents, e.g., after the earthquake/tsunami in Japan (2011), our research focuses on constructing rapid and accurate land cover maps of the impacted area in case of an accidental nuclear release. The methodology involves integration of results from two different approaches, namely coarse spatial resolution multi-temporal and fine spatial resolution imagery, to increase classification accuracy. Although advanced methods have been developed for classification using high spatial or temporal resolution imagery, only a limited amount of work has been done on fusion of these two remote sensing approaches. The presented methodology thus involves integration of classification results from two different remote sensing modalities in order to improve classification accuracy. The data used included RapidEye and MODIS scenes over the Nine Mile Point Nuclear Power Station in Oswego (New York, USA). The first step in the process was the construction of land cover maps from freely available, high temporal resolution, low spatial resolution MODIS imagery using a time-series approach. We used the variability in the temporal signatures among different land cover classes for classification. The time series-specific features were defined by various physical properties of a pixel, such as variation in vegetation cover and water content over time. The pixels were classified into four land cover classes - forest, urban, water, and vegetation - using Euclidean and Mahalanobis distance metrics. On the other hand, a high spatial resolution commercial satellite, such as RapidEye, can be tasked to capture images over the affected area in the case of a nuclear event. This imagery served as a second source of data to augment results from the time series approach. The classifications from the two approaches were integrated using an a posteriori probability-based fusion approach. This was done by establishing a relationship between the classes, obtained after classification of the two data sources. Despite the coarse spatial resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion-based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. This fusion thus contributed to classification accuracy refinement, with a few additional advantages, such as correction for cloud cover and providing for an approach that is robust against point-in-time seasonal anomalies, due to the inclusion of multi-temporal data

    A Conversation With Steve Shagan

    Get PDF
    On the evening of November 11, Steve Shagan met with the film students at Columbia College. Shagan authored and produced Save the Tiger. The discussion was moderated by Anthony Loeb, chair of the Film Department. Photographer: Randy Donefrio. 23 pages.https://digitalcommons.colum.edu/conversations/1003/thumbnail.jp

    Semantically Invariant Text-to-Image Generation

    Full text link
    Image captioning has demonstrated models that are capable of generating plausible text given input images or videos. Further, recent work in image generation has shown significant improvements in image quality when text is used as a prior. Our work ties these concepts together by creating an architecture that can enable bidirectional generation of images and text. We call this network Multi-Modal Vector Representation (MMVR). Along with MMVR, we propose two improvements to the text conditioned image generation. Firstly, a n-gram metric based cost function is introduced that generalizes the caption with respect to the image. Secondly, multiple semantically similar sentences are shown to help in generating better images. Qualitative and quantitative evaluations demonstrate that MMVR improves upon existing text conditioned image generation results by over 20%, while integrating visual and text modalities.Comment: 5 papers, 5 figures, Published in 2018 25th IEEE International Conference on Image Processing (ICIP
    • …
    corecore