8 research outputs found
Study of Different Acid Reaction Mechanisms during Matrix Acidizing
HEDTA proved to be efficient in dissolving ions like calcium, magnesium, sodium and potassium from sandstone and carbonate rocks whereas GLDA introduced more numbers of large pore holes in case of dolomite acidizing, leading to greater increase in permeability. This research also summarizes the results obtained through a variety of tests which includes dissolution, Inductively Coupled Plasma, Nuclear Magnetic Resonance and mineral analysis, which helped in understanding the interactions of chelating agent with formation rocks
PERFORMANCE OF DIFFERENT ACIDS OF VARIOUS FORMULATIONS ON SANDSTONE FORMATION
Stimulation of sandstone formations is a challenging task, which involves
several chemicals and physical interactions of the acid with the formation. As more
technologies to enhance oil production recovery are being developed, wellstimulation
has been introduced and it acts as one of the important roles to fulfil the demand of
the world for energy. Well stimulation is a well interventionperformed on an oil or
gas well to increase production by improving the flow of hydrocarbons from
the drainage area into thewellbore. Well stimulation generally uses fluids which
create or enlarge the flow channels of formation so that it can overcome low
permeability of formation
Investigation of Changing Pore Topology and Porosity during Matrix Acidizing using Different Chelating Agents
Core flooding acidizing experiments on sandstone/carbonate formation are usually performed in the laboratory to observe different physical phenomena and to design acidizing stimulation jobs for the field. During the tests, some key parameters are analyzed such as pore volume required for breakthrough as well as pressure. Hydrochloric acid (HCl) is commonly used in the carbonate matrix acidizing while Mud acid (HF: HCl) is usually applied during the sandstone acidizing to remove damage around the well bore. However, many problems are associated with the application of these acids, such as fast reaction, corrosion and incompatibility of HCl with some minerals (illite). To overcome these problems, chelating agents (HEDTA, EDTA and GLDA) were used in this research. Colton tight sandstone and Guelph Dolomite core samples were used in this study. The experiments usually are defined in terms of porosity, permeability, dissolution and pore topology. Effluent samples were analyzed to determine dissolved iron, sodium, potassium, calcium and other positive ions using Inductively Coupled Plasma (ICP). Meanwhile Nuclear Magnetic Resonance (NMR) was employed to determine porosity and pore structure of the core sample. Core flood experiments on Berea sandstone cores and dolomite samples with dimensions of 1.5 in × 3 in were conducted at a flow rate of 1 cc/min under 150oF temperature. NMR and porosity analysis concluded that applied chemicals are effective in creating fresh pore spaces. ICP analysis concluded that HEDTA showed good ability to chelate calcium, sodium, magnesium, potassium and iron. It can be established from the analysis that HEDTA can increase more amount of permeability as compared to other chelates
Investigating the Effectiveness of Emulsified Acid on Sandstone Formation under High Temperature Conditions
Acid stimulation supports the oil and gas industry as a versatile mean in enhanced oil recovery to fulfill the world energy demand. Although hydrochloric acid can significantly improve the reservoir permeability, its rapid reaction rate at high temperature has created a barrier for acid penetration. Subsequently, emulsified acid has slowly gain its popularity due to its retardation effect which allows deeper penetration of acid into the formation and achieves minimal corrosion issues. Nonetheless, emulsified acid has rarely applied on sandstone formation. Since a large portion of reservoirs are made up of sandstone, the effects of emulsified acid on sandstone under high temperature conditions should be studied to unlock the effective usage of emulsified acid in restoring the hydrocarbon recovery from the potential sandstone reservoirs. Besides, it is also crucial to explore cheaper and greener substitute to formulate
innovative emulsified acid in minimizing the high acidizing budget along with environmental concerns. In this project, 10 different emulsified acid combinations are prepared using hydrofluoric acid, hydrochloric acid, phosphoric acid, formic acid, acetic acid, cationic surfactant, diesel and waste oil. The pre-flush treatment (5 % CH3COOH: 10 % HCl) is followed by the main flush (emulsified acids) saturation for 3 days. The thermal stability of emulsified acids and their effect on the Berea sandstone properties are evaluated. Major outcome is that the emulsified acids have the capability to remain stable at 275 °F up to 6 hours with uniform and fine droplet size. It is also proven that most of the emulsified acids can improve the porosity and permeability of Berea sandstone core samples except for HF: H3PO4. Regardless of the types of oil used for emulsified acid formulation, HF: HCl acid combination shows the best performance enhancement for both diesel-based and waste oil-based emulsified acids. In sandstone acidizing, emulsified acid dissolves the minerals and create acid transport pathway with close connectivity between pore spaces, causing the formation of large and conductive channels within the rock. Hence, these positive results clearly reflect on the feasibility of emulsified acid application in sandstone matrix acidizing and the effectiveness of waste oil as a replacement fluid for diesel
New Acid Combination for a Successful Sandstone Acidizing
With the development of new enhanced oil recovery techniques, sandstone acidizing has been introduced and played a pivotal role in the petroleum industry. Different acid combinations have been applied, which react with the formation, dissolve the soluble particles; thus increase the production of hydrocarbons. To solve the problems which occurred using current preflush sandstone acidizing technology (hydrochloric acid); a new acid combination has been developed. Core flooding experiments on sandstone core samples with dimensions 1.5 in. × 3 in. were conducted at a flow rate of 2 cm 3 /min. A series of hydrochloric-acetic acid mixtures with different ratios were tested under 150°F temperature. The core flooding experiments performed are aimed to dissolve carbonate, sodium, potassium and calcium particles from the core samples. These experiments are followed by few important tests which include, porosity-permeability, pH value, Inductively Coupled Plasma (ICP) analysis and Nuclear Magnetic Resonance (NMR measurements). All the results are compared with the results of conventional hydrochloric acid technology. NMR and porosity analysis concluded that the new acid combination is more effective in creating fresh pore spaces and thus increasing the reservoir permeability. It can be seen from the pore distribution before and after the acidizing. Prior applying acid; the large size of pores appears most frequently in the pore distribution while with the applied acid, it was found that the small pore size is most the predominant of the pore distribution. These results are validated using ICP analysis which shows the effective removal of calcium and other positive ions from the core sample. This study concludes that the combination of acetic-hydrochloric acid can be a potential candidate for the preflush stage of sandstone acidizing at high temperature reservoirs
An effective acid combination for enhanced properties and corrosion control of acidizing sandstone formation
To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing
Comparison of buffer effect of different acids during sandstone acidizing
The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid