5,005 research outputs found
Safety, the Preface Paradox and Possible Worlds Semantics
This paper contains an argument to the effect that possible worlds semantics renders
semantic knowledge impossible, no matter what ontological interpretation is given
to possible worlds. The essential contention made is that possible worlds semantic
knowledge is unsafe and this is shown by a parallel with the preface paradox
Low Frequency Tilt Seismology with a Precision Ground Rotation Sensor
We describe measurements of the rotational component of teleseismic surface
waves using an inertial high-precision ground-rotation-sensor installed at the
LIGO Hanford Observatory (LHO). The sensor has a noise floor of 0.4 nrad at 50 mHz and a translational coupling of less than 1 rad/m
enabling translation-free measurement of small rotations. We present
observations of the rotational motion from Rayleigh waves of six teleseismic
events from varied locations and with magnitudes ranging from M6.7 to M7.9.
These events were used to estimate phase dispersion curves which shows
agreement with a similar analysis done with an array of three STS-2
seismometers also located at LHO
Irreversibility and Polymer Adsorption
Physisorption or chemisorption from dilute polymer solutions often entails
irreversible polymer-surface bonding. We present a theory of the
non-equilibrium layers which result. While the density profile and loop
distribution are the same as for equilibrium layers, the final layer comprises
a tightly bound inner part plus an outer part whose chains make only fN surface
contacts where N is chain length. The contact fractions f follow a broad
distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong
physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let
Rydberg trimers and excited dimers bound by internal quantum reflection
Quantum reflection is a pure wave phenomena that predicts reflection of a
particle at a changing potential for cases where complete transmission occurs
classically. For a chemical bond, we find that this effect can lead to
non-classical vibrational turning points and bound states at extremely large
interatomic distances. Only recently has the existence of such ultralong-range
Rydberg molecules been demonstrated experimentally. Here, we identify a broad
range of molecular lines, most of which are shown to originate from two
different novel sources: a single-photon associated triatomic molecule formed
by a Rydberg atom and two ground state atoms and a series of excited dimer
states that are bound by a so far unexplored mechanism based on internal
quantum reflection at a steep potential drop. The properties of the Rydberg
molecules identified in this work qualify them as prototypes for a new type of
chemistry at ultracold temperatures.Comment: 6 pages, 3 figures, 1 tabl
Pulse-driven quantum dynamics beyond the impulsive regime
We review various unitary time-dependent perturbation theories and compare
them formally and numerically. We show that the Kolmogorov-Arnold-Moser
technique performs better owing to both the superexponential character of
correction terms and the possibility to optimize the accuracy of a given level
of approximation which is explored in details here. As an illustration, we
consider a two-level system driven by short pulses beyond the sudden limit.Comment: 15 pages, 5 color figure
Structural power performance requirements for future aircraft integration
This paper investigates the use of structural power composites in Airbus A220-100 aircraft cabins by integrating floor panels with face sheets made of structural power composites to power the in-flight entertainment system. This application requires a minimum specific energy of 305 Wh/kg and a minimum specific power of 0.610 kW/kg. The static and dynamic loads for which the floor panels must be certified require an in-plane Youngâs modulus of 50 GPa, a compressive strength of 225 MPa and a tensile strength of 119 MPa. Structural power composite floor panels are predicted to yield mass savings of 324 kg, annual cost savings of ÂŁ85,000 per aircraft and annual reductions in CO2 and NOx emissions of 343 tonnes and 1.4 tonnes respectively. However, addressing challenges such as fire-resistance, long term cycling performance and public perception of structural power composites are necessary to enable widespread use of such materials on-board airliners
Explaining Evidence Denial as Motivated Pragmatically Rational Epistemic Irrationality
This paper introduces a model for evidence denial that explains this behavior as a manifestation of rationality and it is based on the contention that social values (measurable as utilities) often underwrite these sorts of responses. Moreover, it is contended that the value associated with group membership in particular can override epistemic reason when the expected utility of a belief or belief system is great. However, it is also true that it appears to be the case that it is still possible for such unreasonable believers to reverse this sort of dogmatism and to change their beliefs in a way that is epistemically rational. The conjecture made here is that we should expect this to happen only when the expected utility of the beliefs in question dips below a threshold where the utility value of continued dogmatism and the associated group membership is no longer sufficient to motivate defusing the counter-evidence that tells against such epistemically irrational beliefs
CrashEd â A live immersive, learning experience embedding STEM subjects in a realistic, interactive crime scene
Interactive experiences are rapidly becoming popular via the surge of âescape roomsâ; part game and part theatre, the âescapeâ experience is exploding globally, having gone from zero offered at the outset of 2010 to at least 2800 different experiences available worldwide today. CrashEd is an interactive learning experience that parallels many of the attractions of an escape room â it incorporates a staged, realistic âcrime sceneâ and invites participants to work together to gather forensic evidence and question a witness in order to solve a crime, all whilst competing against a ticking clock. An animation can enhance reality and engage with cognitive processes to help learning; in CrashEd, it is the last piece of the jigsaw that consolidates the studentsâ incremental acquisition of knowledge to tie together the pieces of evidence, identify a suspect and ultimately solve the crime. This article presents the background to CrashEd and an overview of how a timely placed animation at the end of an educational experience can enhance learning. The lessons learned, from delivering bespoke versions of the experience to different demographic groups, are discussed. The article will consider the successes and challenges raised by the collaborative project, future developments and potential wider implications of the development of CrashEd
Self-diffusion in binary blends of cyclic and linear polymers
A lattice model is used to estimate the self-diffusivity of entangled cyclic
and linear polymers in blends of varying compositions. To interpret simulation
results, we suggest a minimal model based on the physical idea that constraints
imposed on a cyclic polymer by infiltrating linear chains have to be released,
before it can diffuse beyond a radius of gyration. Both, the simulation, and
recently reported experimental data on entangled DNA solutions support the
simple model over a wide range of blend compositions, concentrations, and
molecular weights.Comment: 10 pages, 2 figure
- âŠ