2 research outputs found

    Role of Platelet-Activating Factor and Hypoxia in Persistent Pulmonary Hypertension of the Newborn — Studies with Perinatal Pulmonary Vascular Smooth Muscle Cells

    Get PDF
    Platelet-activating factor (PAF) plays an important physiological role of maintaining a high vasomotor tone in fetal pulmonary circulation. At birth, endogenous vasodilators such as nitric oxide and prostacyclin are released and facilitate pulmonary vasodilation via cAMP-dependent protein kinase (cAMP/PKA) and cGMP-dependent protein kinase (cGMP/PKG) pathways. Interaction between the cyclic nucleotides and PAF receptor (PAFR)-mediated responses in pulmonary arterial smooth muscle is not well understood. To further understand the interactions of PAF-PAFR pathway and the cyclic nucleotides in ovine fetal pulmonary arterial smooth muscle cells (FPASMC), effects of cAMP and cGMP on PAFR-mediated responses in pulmonary arterial smooth muscle cells (PASMC) were studied. Ovine FPASMC were incubated with 10μM cAMP or cGMP in normoxia (5% CO2 in air, pO2~100 Torr) or hypoxia (2% O2, 5% CO2, pO2~30-40 Torr). Proteins were prepared and subjected to Western blotting. Effect of cell permeable cAMP and cGMP on PAFR binding was also studied and effect of cAMP on cell proliferation was also studied by RNAi to PKA-Cα. cAMP and cGMP significantly decreased PAFR binding and protein expression in normoxia and hypoxia, more so in hypoxia, when PAFR expression was usually high. PKA-Cα siRNA demonstrated that inhibition of PAFR-mediated responses by the cyclic nucleotides occurred through PKA. These data suggest that the normally high levels of cyclic nucleotides in the normoxic newborn pulmonary circulation assist in the downregulation of postnatal PAFR-mediated responses and that under hypoxic conditions, increasing the levels of cyclic nucleotides will abrogate PAF-mediated vasoconstriction thereby ameliorating PAF-induced persistent pulmonary hypertension of the newborn

    Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation

    No full text
    Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway
    corecore