21 research outputs found
Conclusions on motor control depend on the type of model used to represent the periphery
Within the field of motor control, there is no consensus on which kinematic and kinetic aspects of movements are planned or controlled. Perturbing goal-directed movements is a frequently used tool to answer this question. To be able to draw conclusions about motor control from kinematic responses to perturbations, a model of the periphery (i.e., the skeleton, muscle-tendon complexes, and spinal reflex circuitry) is required. The purpose of the present study was to determine to what extent such conclusions depend on the level of simplification with which the dynamical properties of the periphery are modeled. For this purpose, we simulated fast goal-directed single-joint movement with four existing types of models. We tested how three types of perturbations affected movement trajectory if motor commands remained unchanged. We found that the four types of models of the periphery showed different robustness to the perturbations, leading to different predictions on how accurate motor commands need to be, i.e., how accurate the knowledge of external conditions needs to be. This means that when interpreting kinematic responses obtained in perturbation experiments the level of error correction attributed to adaptation of motor commands depends on the type of model used to describe the periphery
Adaptive robot training for the treatment of incoordination in Multiple Sclerosis
<p>Abstract</p> <p>Background</p> <p>Cerebellar symptoms are extremely disabling and are common in Multiple Sclerosis (MS) subjects. In this feasibility study, we developed and tested a robot therapy protocol, aimed at the rehabilitation of incoordination in MS subjects.</p> <p>Methods</p> <p>Eight subjects with clinically defined MS performed planar reaching movements while grasping the handle of a robotic manipulandum, which generated forces that either reduced (error-reducing, ER) or enhanced (error-enhancing, EE) the curvature of their movements, assessed at the beginning of each session. The protocol was designed to adapt to the individual subjects' impairments, as well as to improvements between sessions (if any). Each subject went through a total of eight training sessions. To compare the effect of the two variants of the training protocol (ER and EE), we used a cross-over design consisting of two blocks of sessions (four ER and four EE; 2 sessions/week), separated by a 2-weeks rest period. The order of application of ER and EE exercises was randomized across subjects. The primary outcome measure was the modification of the Nine Hole Peg Test (NHPT) score. Other clinical scales and movement kinematics were taken as secondary outcomes.</p> <p>Results</p> <p>Most subjects revealed a preserved ability to adapt to the robot-generated forces. No significant differences were observed in EE and ER training. However over sessions, subjects exhibited an average 24% decrease in their NHPT score. The other clinical scales showed small improvements for at least some of the subjects. After training, movements became smoother, and their curvature decreased significantly over sessions.</p> <p>Conclusions</p> <p>The results point to an improved coordination over sessions and suggest a potential benefit of a short-term, customized, and adaptive robot therapy for MS subjects.</p
A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components
The cognitive neuroscience of prehension: recent developments
Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions
Two thymus-related autoimmune disorders: a case report and review of the literature
Mirtavoos-Mahyari Hanifeh,1 Adnan Khosravi,2 Esfahani-Monfared Zahra,1 Shadmehr Mohammad Behgam31Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; 2Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; 3Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, IranAbstract: Thymoma is the most common tumor in the anterior mediastinum. A 56-year-old man presented unremitting and periodic chronic diarrhea of 9 weeks duration, and clinical examination revealed a huge nonhomogeneous mass lesion in the right lung and leukocytosis. He was treated with CHOP regimen (cyclophosphamide 1,200 mg/m2, doxorubicin 50 mg/m2, vincristine 1.5 mg/m2 and prednisolone 75 mg/m2 × 5 days) based on lung mass computed tomography-guided biopsy, but he was reevaluated because neither symptom improved. Surprisingly, celiac disease was documented with increased titer of immunoglobulin antibodies to gliadin and tissue transglutaminase. Lung mass rebiopsy and thymectomy demonstrated thymoma. After surgery, the patient showed aplastic anemia that responded well to cyclosporine. At 2-year follow-up, the patient’s hematologic status and diarrhea were completely recovered and no symptom and/or sign of thymoma recurrence was seen.Keywords: thymus, thymoma, celiac, aplastic anemia, autoimmune disorde