421 research outputs found

    Chronology for climate change: Developing age models for the biogeochemical ocean flux study cores

    Get PDF
    We construct age models for a suite of cores from the northeast Atlantic Ocean by means of accelerator mass spectrometer dating of a key core, BOFS 5K, and correlation with the rest of the suite. The effects of bioturbation and foraminiferal species abundance gradients upon the age record are modeled using a simple equation. The degree of bioturbation is estimated by comparing modeled profiles with dispersal of the Vedde Ash layer in core 5K, and we find a mixing depth of roughly 8 cm for sand-sized material. Using this value, we estimate that age offsets between unbioturbated sediment and some foraminifera species after mixing may be up to 2500 years, with lesser effect on fine carbonate (<10 mu m) ages. The bioturbation model illustrates problems associated with the dating of ''instantaneous'' events such as ash layers and the ''Heinrich'' peaks of ice-rafted detritus. Correlations between core 5K and the other cores from the BOFS suite are made on the basis of similarities in the downcore profiles of oxygen and carbon isotopes, magnetic susceptibility, water and carbonate content, and via marker horizons in X radiographs and ash beds

    Northeastern Atlantic benthic foraminifera during the last 45,000 years: Changes in productivity seen from the bottom up

    Get PDF
    We studied benthic foraminifera from the last 45 kyr in the >63 mu m size fraction in Biogeochemical Ocean Flux Studies (BOFS) cores 5K (50 degrees 41.3'N, 21 degrees 51.9'W, depth 3547 m) and 14K (58 degrees 37.2'N, 19 degrees 26.2'W, depth 1756 m), at a time resolution of several hundreds to a thousand years. The deepest site showed the largest fluctuations in faunal composition, species richness, and benthic foraminiferal accumulation rates; the fluctuations resulted from changes in abundance of Epistominella exigua and Alabaminella weddellensis. In the present oceans, these species bloom opportunistically when a spring plankton bloom results in seasonal deposition of phytodetritus on the seafloor. The ''phytodetritus species'' had very low relative abundances and accumulation rates during the last glacial maximum. A strong increase in absolute and relative abundance of E. exigua and A weddellensis during deglaciation paralleled the decrease in abundance of the polar planktonic foraminifer Neogloboquadrina pachyderma (s), and the increase in abundance of warmer water planktonic species such as Globigerina bulloides. This strong increase in relative abundance of the ''phytodetritus species'' and the coeval increase in benthic foraminiferal accumulation rate were thus probably caused by an increase in the deposition of phytodetritus to the seafloor (and thus probably of surface productivity) when the polar front retreated to higher latitudes. The abundance of ''phytodetritus species'' decreased during the Younger Dryas, but not to the low levels of fully glacial conditions. During Heinrich events (periods of excessive melt-water formation and ice rafting) benthic accumulation rates were very low, as were the absolute and relative abundances of the ''phytodetritus species'', supporting suggestions that surface productivity was very low during these events. In both cores Pullenia and Cassidulina species were common during isotope stages 2, 3 and 4, as were bolivinid, buliminid and uvigerinid species. High relative abundances of these species have been interpreted as indicative either of sluggish deep water circulation or of high organic carbon fluxes to the seafloor. In our cores, relative abundances of these species are negatively correlated with benthic foraminiferal accumulation rates, and we can thus not interpret them as indicative of increased productivity during glacials. The percentage of these ''low oxygen'' species calculated on a ''phytodetritus species'' - free basis decreased slightly at deglaciation at 5K, but not at 14K. This suggests that decreased production of North Atlantic Deep Water during the last glacial might have slightly affected benthic foraminiferal faunas in the eastern North Atlantic at 3547 m depth, but not at 1756 m. In conclusion, major changes in deep-sea benthic foraminiferal faunas over the last 45,000 years in our cores from the northeastern Atlantic were the result of changes in surface water productivity, not of changes in deep water circulation; productivity was lower during the glacial, probably because of extensive ice cover

    Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds

    Get PDF
    We developed a new method to calculate sea surface salinities (SSS) and densities (SSD) from planktonic foraminiferal delta(18)O and sea surface temperatures (SST) as determined from planktonic foraminiferal species abundances. SST, SSS, and SSD records were calculated for the last 45,000 years for Biogeochemical Oceanic Flux Study (BOFS) cores 5K and 8K recovered from the northeast Atlantic. The strongest feature is the dramatic drop in all three parameters during the Heinrich ''ice-rafting'' events. We modelled the possibility of deepwater formation in the northeast Atlantic from the SSD records, by assuming that the surface waters at our sites cooled as they flowed further north. Comparison with modelled North Atlantic deepwater densities indicates that there could have been periods of deepwater formation between 45,000 and 30,000 C-14 years B.P. (interrupted by iceberg meltwater input of Heinrich event 3 and 4, at 27,000 and 38,000 C-14 years B.P.) and during the Holocene. No amount of cooling in the northeast Atlantic between 30,000 and 13,000 years could cause deep water to form, because of the low salinities resulting from the high meltwater inputs from icebergs. Our records indicate that after each Heinrich event there were periods of climatic rebound, with milder conditions persisting for up to 2000 years, as indicated by the presence of warmer and more saline water masses. After these warm periods conditions returned to average glacial levels. These short term cold and warm episodes in the northeast Atlantic ate superimposed on the general trend towards colder conditions of the Last Glacial Maximum (LGM). Heinrich event 1 appears to be unique as it occurs as insolation rose and was coeval with the initial melting of the Fennoscandian ice sheet. We propose that meltwater input of Heinrich event 1 significantly reduced North Atlantic Deep Water formation reducing the heat exchange between the low and high latitudes, thus delaying deglaciation by about 1500 radiocarbon years (2000 calendar years)

    A simple rule to determine which insolation cycles lead to interglacials

    Get PDF
    The pacing of glacial–interglacial cycles during the Quaternary period (the past 2.6 million years) is attributed to astronomically driven changes in high-latitude insolation. However, it has not been clear how astronomical forcing translates into the observed sequence of interglacials. Here we show that before one million years ago interglacials occurred when the energy related to summer insolation exceeded a simple threshold, about every 41,000 years. Over the past one million years, fewer of these insolation peaks resulted in deglaciation (that is, more insolation peaks were ‘skipped’), implying that the energy threshold for deglaciation had risen, which led to longer glacials. However, as a glacial lengthens, the energy needed for deglaciation decreases. A statistical model that combines these observations correctly predicts every complete deglaciation of the past million years and shows that the sequence of interglacials that has occurred is one of a small set of possibilities. The model accounts for the dominance of obliquity-paced glacial–interglacial cycles early in the Quaternary and for the change in their frequency about one million years ago. We propose that the appearance of larger ice sheets over the past million years was a consequence of an increase in the deglaciation threshold and in the number of skipped insolation peaks.P.C.T. acknowledges funding from a Leverhulme Trust Research Project Grant (RPG-2014-417). M.C. and T.M. acknowledge support from the Belgian Policy Office under contract BR/121/A2/STOCHCLIM. E.W.W. is funded under a Royal Society Research Professorship and M.C. is a senior research scientist with the Belgian National Fund of Scientific Research

    Modeling the dynamics of glacial cycles

    Full text link
    This article is concerned with the dynamics of glacial cycles observed in the geological record of the Pleistocene Epoch. It focuses on a conceptual model proposed by Maasch and Saltzman [J. Geophys. Res.,95, D2 (1990), pp. 1955-1963], which is based on physical arguments and emphasizes the role of atmospheric CO2 in the generation and persistence of periodic orbits (limit cycles). The model consists of three ordinary differential equations with four parameters for the anomalies of the total global ice mass, the atmospheric CO2 concentration, and the volume of the North Atlantic Deep Water (NADW). In this article, it is shown that a simplified two-dimensional symmetric version displays many of the essential features of the full model, including equilibrium states, limit cycles, their basic bifurcations, and a Bogdanov-Takens point that serves as an organizing center for the local and global dynamics. Also, symmetry breaking splits the Bogdanov-Takens point into two, with different local dynamics in their neighborhoods

    Resident macrophages influence stem cell activity in the mammary gland

    Get PDF
    Introduction Macrophages in the mammary gland are essential for morphogenesis of the ductal epithelial tree and have been implicated in promoting breast tumor metastasis. Although it is well established that macrophages influence normal mammopoiesis, the mammary cell types that these accessory cells influence have not been determined. Here we have explored a role for macrophages in regulating mammary stem cell (MaSC) activity, by assessing the ability of MaSCs to reconstitute a mammary gland in a macrophage-depleted fat pad. Methods Two different in vivo models were used to deplete macrophages from the mouse mammary fat pad, allowing us to examine the effect of macrophage deficiency on the mammary repopulating activity of MaSCs. Both the Csf1(op/op) mice and clodronate liposome-mediated ablation models entailed transplantation studies using the MaSC-enriched population. Results We show that mammary repopulating ability is severely compromised when the wild-type MaSC-enriched subpopulation is transplanted into Csf1(op/op) fat pads. In reciprocal experiments, the MaSC-enriched subpopulation from Csf1(op/op) glands had reduced regenerative capacity in a wildtype environment. Utilizing an alternative strategy for selective depletion of macrophages from the mammary gland, we demonstrate that co-implantation of the MaSC-enriched subpopulation with clodronate-liposomes leads to a marked decrease in repopulating frequency and outgrowth potential. Conclusions Our data reveal a key role for mammary gland macrophages in supporting stem/progenitor cell function and suggest that MaSCs require macrophage-derived factors to be fully functional. Macrophages may therefore constitute part of the mammary stem cell nich

    Islands beneath islands: phylogeography of a groundwater amphipod crustacean in the Balearic archipelago

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metacrangonyctidae (Amphipoda, Crustacea) is an enigmatic continental subterranean water family of marine origin (thalassoid). One of the species in the genus, <it>Metacrangonyx longipes</it>, is endemic to the Balearic islands of Mallorca and Menorca (W Mediterranean). It has been suggested that the origin and distribution of thalassoid crustaceans could be explained by one of two alternative hypotheses: (1) active colonization of inland freshwater aquifers by a marine ancestor, followed by an adaptative shift; or (2) passive colonization by stranding of ancestral marine populations in coastal aquifers during marine regressions. A comparison of phylogenies, phylogeographic patterns and age estimations of clades should discriminate in favour of one of these two proposals.</p> <p>Results</p> <p>Phylogenetic relationships within <it>M. longipes </it>based on three mitochondrial DNA (mtDNA) and one nuclear marker revealed five genetically divergent and geographically structured clades. Analyses of cytochrome oxidase subunit 1 (<it>cox1</it>) mtDNA data showed the occurrence of a high geographic population subdivision in both islands, with current gene flow occurring exclusively between sites located in close proximity. Molecular-clock estimations dated the origin of <it>M. longipes </it>previous to about 6 Ma, whereas major cladogenetic events within the species took place between 4.2 and 2.0 Ma.</p> <p>Conclusions</p> <p><it>M. longipes </it>displayed a surprisingly old and highly fragmented population structure, with major episodes of cladogenesis within the species roughly correlating with some of the major marine transgression-regression episodes that affected the region during the last 6 Ma. Eustatic changes (vicariant events) -not active range expansion of marine littoral ancestors colonizing desalinated habitats-explain the phylogeographic pattern observed in <it>M. longipes</it>.</p

    Obliquity pacing of the late Pleistocene glacial terminations

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 434 (2005): 491-494, doi:10.1038/nature03401.The timing of glacial/interglacial cycles at intervals of about 100,000 yr (100 kyr) is commonly attributed to control by Earth orbital configuration variations. This “pacemaker” hypothesis has inspired many models, variously depending upon Earth obliquity, orbital eccentricity, and precessional fluctuations, with the latter usually emphasized. A contrasting hypothesis is that glacial cycles arise primarily because of random internal climate variability. Progress requires distinguishing between the more than 30 proposed models of the late Pleistocene glacial variations. Here we present a formal test of the pacemaker hypothesis, focusing on the rapid deglaciation events known as terminations. The null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level. In contrast, for eccentricity and precession, the corresponding null-hypotheses cannot be rejected. The simplest inference, consistent with the observations, is that ice-sheets terminate every second (80 kyr) or third (120 kyr) obliquity cycle — at times of high obliquity — and similar to the original Milankovitch assumption. Hypotheses not accounting for the obliquity pacing are unlikely to be correct. Both stochastic and deterministic variants of a simple obliquity-paced model describe the observations.PH is supported by the NOAA Postdoctoral Program in Climate and Global Change and CW in part by the National Ocean Partnership Program (ECCO)
    • 

    corecore