27 research outputs found

    Primary Colorectal Adenocarcinoma Metastatic to the Breast: Case Report and Review of Nineteen Cases

    Get PDF
    Metastases to the breast from extramammary primaries are uncommon and account for 0.5–6% of all breast malignancies (Georgiannos et al., 2001, and Vizcaíno et al., 2001). Malignant melanoma, lymphoma, and lung and gastric carcinomas are the most frequently encountered nonmammary metastases to the breast in adults (Georgiannos et al., 2001, and Chaignaud et al., 1994). Primary colorectal adenocarcinoma (CRC) metastatic to the breast is extremely rare, with the medical literature having only 19 recorded cases. Typically CRC metastatic to the breast is indicative of widely disseminated disease and a poor prognosis. Here we present a case of poorly differentiated colon cancer metastatic to the breast and review the current literature on this rare event

    The Ataxia telangiectasia Gene Product Is Required for Oxidative Stress-induced G 1 and G 2 Checkpoint Function in Human Fibroblasts

    Get PDF
    Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by neuronal degeneration accompanied by ataxia, telangiectasias, acute cancer predisposition, and sensitivity to ionizing radiation (IR). Cells from individuals with AT show unusual sensitivity to IR, severely attenuated cell cycle checkpoint functions, and poor p53 induction in response to IR compared with normal human fibroblasts (NHFs). The gene mutated in AT (ATM) has been cloned, and its product, pATM, has IR-inducible kinase activity. The AT phenotype has been suggested to be a consequence, at least in part, of an inability to respond appropriately to oxidative damage. To test this hypothesis, we examined the ability of NHFs and AT dermal fibroblasts to respond to t-butyl hydroperoxide and IR treatment. AT fibroblasts exhibit, in comparison to NHFs, increased sensitivity to the toxicity of t-butyl hydroperoxide, as measured by colony-forming efficiency assays. Unlike NHFs, AT fibroblasts fail to show G(1) and G(2) phase checkpoint functions or to induce p53 in response to t-butyl hydroperoxide. Treatment of NHFs with t-butyl hydroperoxide activates pATM-associated kinase activity. Our results indicate that pATM is involved in responding to certain aspects of oxidative damage and in signaling this information to downstream effectors of the cell cycle checkpoint functions. Our data further suggest that some of the pathologies seen in AT could arise as a consequence of an inability to respond normally to oxidative damage

    Hydrogen Sulfide-Synthesizing Enzymes Are Altered in a Case of Oral Cavity Mucoepidermoid Carcinoma

    Get PDF
    Mucoepidermoid carcinoma (MEC) is the most common malignant epithelial neoplasm of the salivary glands. MECs of the mouth floor are rare, with only a few cases reported. Here we report a MEC of the mouth floor in a 55-year-old woman. Since several studies have shown that hydrogen sulfide (H2S)-synthesizing enzymes are often increased in malignant tumors compared to benign counterpart tissues, we used western blotting to compare the protein levels of cystathionine-β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) in a mouth floor MEC to adjacent benign oral mucosae. We also used high-performance liquid chromatography to quantify possible differences in tissue sulfur fraction concentrations between the two biopsy types. Last, we used western blotting to examine nicotinamide phosphoribosyl transferase (Nampt), mitoNEET, and phospho-ser727-Stat3 levels in the biopsies. We found that all the proteins and phospho-ser727-Stat3 are increased in the MEC compared to benign mucosae. Interestingly, free H2S levels, acid-labile, and the sulfane sulfur factions were essentially the same between the MEC and benign tissue. Although limited to a single and unusual tumor type, to our knowledge this is only the third time H2S concentrations were directly quantified inside a human tumor. Last, our results replicate those of two previous studies where the H2S-synthesizing enzymes are increased in a malignant tumor, while free H2S is either not increased or only slightly increased, suggesting that malignant tumors rapidly metabolize H2S as part of tumor maintenance and growth

    Hydrogen Sulfide and Hydrogen Sulfide-Synthesizing Enzymes Are Altered in a Case of Oral Adenoid Cystic Carcinoma

    Get PDF
    Adenoid cystic carcinomas (ACC) constitute 1% of all head and neck malignancies and are very rare in the oral cavity. With < 60 oral ACCs described, their pathobiology is incompletely understood. Here, we report a case of oral cavity ACC in a 54-year-old woman. Since recent studies have demonstrated that several human tumors overexpress the hydrogen sulfide (H2S)-synthesizing enzymes cystathionine-β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), and also show dysregulated H2S levels, we examined these biomarkers in the oral ACC and compared the results to those of adjacent benign oral epithelium. Western blotting was used to compare the protein expression of CBS, CSE, 3-MST, nicotinamide phosphoribosyl transferase, and mitoNEET in ACC and adjacent benign oral mucosae. High-performance liquid chromatography was used to quantify the differences in tissue H2S concentrations between the two biopsy types. We found that all the proteins examined here were increased in the ACC compared to adjacent benign oral mucosae. Interestingly, H2S concentrations were decreased approximately 30% in ACC compared to benign mucosae. Thus, in one example of this rare tumor type, the enzymes that synthesize H2S are increased, while tissue H2S levels are lower than those found in adjacent benign oral mucosae. Although limited to a single rare tumor type, to our knowledge this is the second time H2S concentrations have been directly quantified inside a human tumor. Last, our results may indicate that alterations in H2S synthesis and metabolism may be important in the pathobiology of ACC

    Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition

    Get PDF
    Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology

    Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation

    No full text
    Hydrogen sulfide (H2S) is a gasotransmitter that exerts numerous physiologic and pathophysiologic effects. Recently, a role for H2S in DNA repair has been identified, where H2S modulates cell cycle checkpoint responses, the DNA damage response (DDR), and mitochondrial and nuclear genomic stability. In addition, several DNA repair proteins modulate cellular H2S concentrations and cellular sulfur metabolism and, in turn, are regulated by cellular H2S concentrations. Many DDR proteins are now pharmacologically inhibited in targeted cancer therapies. As H2S and the enzymes that synthesize it are increased in many human malignancies, it is likely that H2S synthesis inhibition by these therapies is an underappreciated aspect of these cancer treatments. Moreover, both H2S and DDR protein activities in cancer and cardiovascular diseases are becoming increasingly apparent, implicating a DDR–H2S signaling axis in these pathophysiologic processes. Taken together, H2S and DNA repair likely play a central and presently poorly understood role in both normal cellular function and a wide array of human pathophysiologic processes. Here, we review the role of H2S in DNA repair

    Acute Myelogenous Leukemia without Maturation with a Retinoic Alpha-Receptor Deletion: A Case Report

    No full text
    Acute promyelocytic leukemia (APL) is characterized by a t(15;17) which fuses the 17q retinoic acid alpha-receptor sequence to the 15q PML gene sequence. The resulting fusion product plays a role in the development and maintenance of APL, and is very rarely found in other acute myeloid leukemia (AML) subtypes. Rare complex APL genomic rearrangements have retinoic acid alpha-receptor sequence deletions. Here we report a retinoic acid alpha-receptor sequence deletion in a case of AML without differentiation. To our knowledge, this is the first example of a retinoic acid alpha-receptor sequence deletion in this AML subtype

    Malignant Melanoma with Concurrent BRAF E586K and NRAS Q81K Mutations

    No full text
    Cutaneous melanoma is an aggressive malignant tumor of melanocytes which accounts for 80% of skin cancer-related deaths. A number of driver mutations have been identified in melanoma, with the mutually exclusive BRAF V600E and NRAS Q61A mutations together accounting for roughly 70% of mutations. Simultaneous BRAF V600E and NRAS Q61A mutations in melanoma are rare, with evidence suggesting that up to 2.9% (2/69) of primary cutaneous melanomas carry both mutations. Here we describe a 42-year-old man with concurrent BRAF E586K and NRAS Q81K driver mutations. To our knowledge, this is the first description of these driver mutations occurring simultaneously in primary cutaneous melanoma
    corecore