1 research outputs found

    Black-hole concept of a point-like nucleus with supercritical charge

    Full text link
    The Dirac equation for an electron in the central Coulomb field of a point-like nucleus with the charge greater than 137 is considered. This singular problem, to which the fall-down onto the centre is inherent, is addressed using a new approach, based on a black-hole concept of the singular centre and capable of producing cut-off-free results. To this end the Dirac equation is presented as a generalized eigenvalue boundary problem of a self-adjoint operator. The eigenfunctions make complete sets, orthogonal with a singular measure, and describe particles, asymptotically free and delta-function-normalizable both at infinity and near the singular centre r=0r=0. The barrier transmission coefficient for these particles responsible for the effects of electron absorption and spontaneous electron-positron pair production is found analytically as a function of electron energy and charge of the nucleus. The singular threshold behaviour of the corresponding amplitudes substitutes for the resonance behaviour, typical of the conventional theory, which appeals to a finite-size nucleus.Comment: 22 pages, 5 figures, LATEX requires IOPAR
    corecore