3,225 research outputs found

    Local orbital-angular-momentum dependent surface states with topological protection

    Get PDF
    Chiral surface states along the zigzag edge of a valley photonic crystal in the honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular momentum (OAM) modes, we find that the chiral surface states present OAM-dependent unidirectional propagation characteristics. Particularly, the propagation directivities of the surface states are quantified by the local OAM decomposition and are found to depend on the chiralities of both the source and surface states. These findings allow for the engineering control of the unidirectional propagation of electromagnetic energy without requiring an ancillary cladding layer. Furthermore, we examine the propagation of the chiral surface states against sharp bends. It turns out that although only certain states successfully pass through the bend, the unidirectional propagation is well maintained due to the topology of the structure.Comment: 9 pages, 6 figure

    Hybrid Beamforming via the Kronecker Decomposition for the Millimeter-Wave Massive MIMO Systems

    Get PDF
    Despite its promising performance gain, the realization of mmWave massive MIMO still faces several practical challenges. In particular, implementing massive MIMO in the digital domain requires hundreds of RF chains matching the number of antennas. Furthermore, designing these components to operate at the mmWave frequencies is challenging and costly. These motivated the recent development of hybrid-beamforming where MIMO processing is divided for separate implementation in the analog and digital domains, called the analog and digital beamforming, respectively. Analog beamforming using a phase array introduces uni-modulus constraints on the beamforming coefficients, rendering the conventional MIMO techniques unsuitable and call for new designs. In this paper, we present a systematic design framework for hybrid beamforming for multi-cell multiuser massive MIMO systems over mmWave channels characterized by sparse propagation paths. The framework relies on the decomposition of analog beamforming vectors and path observation vectors into Kronecker products of factors being uni-modulus vectors. Exploiting properties of Kronecker mixed products, different factors of the analog beamformer are designed for either nulling interference paths or coherently combining data paths. Furthermore, a channel estimation scheme is designed for enabling the proposed hybrid beamforming. The scheme estimates the AoA of data and interference paths by analog beam scanning and data-path gains by analog beam steering. The performance of the channel estimation scheme is analyzed. In particular, the AoA spectrum resulting from beam scanning, which displays the magnitude distribution of paths over the AoA range, is derived in closed-form. It is shown that the inter-cell interference level diminishes inversely with the array size, the square root of pilot sequence length and the spatial separation between paths.Comment: Submitted to IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Networks, minor revisio

    B.R. Wells Arkansas Rice Research Studies 2020

    Get PDF
    Arkansas is the leading rice producer in the United States. The state represents 47.5% of total U.S. rice production and 48.1% of the total acres planted to rice in 2020. Rice cultural practices vary across the state and across the U.S. However, these practices are also dynamic and continue to evolve in response to changing political, environmental, and economic times. This survey was initiated in 2002 to monitor and record changes in the way Arkansas rice producers approach their livelihood. The survey was conducted by polling county extension agents in each of the counties in Arkansas that produce rice. Questions included topics such as tillage practices, water sources and irrigation methods, seeding methods, and precision leveling. Information from the University of Arkansas System Division of Agriculture’s Degree-Day 50 (DD50) Rice Management Program was included to summarize variety acreage distribution across Arkansas. Other data were obtained from the USDA National Agricultural Statistics Service

    B.R. Wells Arkansas Rice Research Studies 2023

    Get PDF
    Arkansas is the leading rice producer in the United States. The state represents 49.0% of total U.S. rice production and 49.6% of the total acres planted to rice in 2023. Rice cultural practices vary across the state and across the U.S. However, these practices are also dynamic and continue to evolve in response to changing political, environmental, and economic times. This survey was initiated in 2002 to monitor and record changes in the way Arkansas rice producers approach their livelihood. The survey was conducted by polling county extension agents in each of the counties in Arkansas that produce rice. Questions included topics such as tillage practices, water sources and irrigation methods, seeding methods, and precision leveling. Information from the University of Arkansas System Division of Agriculture DD50 Rice Management Program was included to summarize the variety acreage distribution across Arkansas. Other data was obtained from the USDA National Agricultural Statistics Service

    Inertial sensor-based knee flexion/extension angle estimation

    Get PDF
    A new method for estimating knee joint flexion/extension angles from segment acceleration and angular velocity data is described. The approach uses a combination of Kalman filters and biomechanical constraints based on anatomical knowledge. In contrast to many recently published methods, the proposed approach does not make use of the earth’s magnetic field and hence is insensitive to the complex field distortions commonly found in modern buildings. The method was validated experimentally by calculating knee angle from measurements taken from two IMUs placed on adjacent body segments. In contrast to many previous studies which have validated their approach during relatively slow activities or over short durations, the performance of the algorithm was evaluated during both walking and running over 5 minute periods. Seven healthy subjects were tested at various speeds from 1 to 5 miles/hour. Errors were estimated by comparing the results against data obtained simultaneously from a 10 camera motion tracking system (Qualysis). The average measurement error ranged from 0.7 degrees for slow walking (1 mph) to 3.4 degrees for running (5mph). The joint constraint used in the IMU analysis was derived from the Qualysis data. Limitations of the method, its clinical application and its possible extension are discussed

    Urate Handling in the Human Body

    Get PDF

    Resistance of geopolymer and Portland cement based systems to silage effluent attack

    Get PDF
    Traditional Portland cement (PC) concrete has been used for many years in the agricultural industry for the construction of silos and silage effluent storage facilities. However, the acidic nature of the silage effluent produced by silage has led to severe degradation of PC concrete which in turn has significant environmental and financial implications. This study compares the resistance of PC and geopolymer (GP) mortars and pastes to silage effluent over 12 months. The GP samples displayed increased resistance to silage effluent in terms of mass and strength loss. Analysis of microstructure suggests that the increased stability of the reaction products is the main factor behind increased silage effluent resistance when compared with PC. It was also found that blends of pulverised fuel ash (PFA) and ground granulated blast furnace slag (GGBS) with a higher PFA content may offer increased long term silage effluent resistance due to the nature of the main binder gel produced in PFA dominant systems
    corecore