2 research outputs found
Quantum Vacuum Experiments Using High Intensity Lasers
The quantum vacuum constitutes a fascinating medium of study, in particular
since near-future laser facilities will be able to probe the nonlinear nature
of this vacuum. There has been a large number of proposed tests of the
low-energy, high intensity regime of quantum electrodynamics (QED) where the
nonlinear aspects of the electromagnetic vacuum comes into play, and we will
here give a short description of some of these. Such studies can shed light,
not only on the validity of QED, but also on certain aspects of nonperturbative
effects, and thus also give insights for quantum field theories in general.Comment: 9 pages, 8 figur
New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production
Since the work of Sauter, and Heisenberg, Euler and K\"ockel, it has been
understood that vacuum polarization effects in quantum electrodynamics (QED)
predict remarkable new phenomena such as light-light scattering and pair
production from vacuum. However, these fundamental effects are difficult to
probe experimentally because they are very weak, and they are difficult to
analyze theoretically because they are highly nonlinear and/or nonperturbative.
The Extreme Light Infrastructure (ELI) project offers the possibility of a new
window into this largely unexplored world. I review these ideas, along with
some new results, explaining why quantum field theorists are so interested in
this rapidly developing field of laser science. I concentrate on the
theoretical tools that have been developed to analyze nonperturbative vacuum
pair production.Comment: 20 pages, 9 figures; Key Lecture at the ELI Workshop and School on
"Fundamental Physics with Ultra-High Fields", 29 Sept - 2 Oct. 2008,
Frauenworth Monastery, Germany; v2: refs updated, English translations of
reviews of Nikishov and Ritu