552 research outputs found
Simulating CO 2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations
We present a study on validation of the National Institute for Environmental Studies Transport Model (NIES TM) by comparing to observed vertical profiles of atmospheric CO2. The model uses a hybrid sigma-isentropic (σ–θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly in the stratosphere. The model transport is driven by reanalyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. The model simulations were run for biosphere, fossil fuel, air–ocean exchange, biomass burning and inverse correction fluxes of carbon dioxide (CO2) by GOSAT Level 4 product. We compared the NIES TM simulated fluxes with data from the HIAPER Pole-to-Pole Observations (HIPPO) Merged 10 s Meteorology, Atmospheric Chemistry, and Aerosol Data, including HIPPO-1, HIPPO-2 and HIPPO-3 from 128.0° E to −84.0° W, and 87.0° N to −67.2° S
The Far-Infrared Properties of Spatially Resolved AKARI Observations
We present the spatially resolved observations of IRAS sources from the
Japanese infrared astronomy satellite AKARI All-Sky Survey during the
performance verification (PV) phase of the mission. We extracted reliable point
sources matched with IRAS point source catalogue. By comparing IRAS and AKARI
fluxes, we found that the flux measurements of some IRAS sources could have
been over or underestimated and affected by the local background rather than
the global background. We also found possible candidates for new AKARI sources
and confirmed that AKARI observations resolved IRAS sources into multiple
sources. All-Sky Survey observations are expected to verify the accuracies of
IRAS flux measurements and to find new extragalactic point sources.Comment: 11 pages, 7 figures, accepted publication in PASJ AKARI special issu
Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2
High-transition-temperature (high-Tc) superconductivity is ubiquitous in the
cuprates containing CuO2 planes but each cuprate has its own character. The
study of the material dependence of the d-wave superconducting gap (SG) should
provide important insights into the mechanism of high-Tc. However, because of
the 'pseudogap' phenomenon, it is often unclear whether the energy gaps
observed by spectroscopic techniques really represent the SG. Here, we report
spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of
nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They
enable us to observe the quasi-particle interference (QPI) effect in this
material, through which unambiguous new information on the SG is obtained. The
analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is
almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level,
while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG
in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This
explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig
Boundary conditions in the Unruh problem
We have analyzed the Unruh problem in the frame of quantum field theory and
have shown that the Unruh quantization scheme is valid in the double Rindler
wedge rather than in Minkowski spacetime. The double Rindler wedge is composed
of two disjoint regions (- and -wedges of Minkowski spacetime) which are
causally separated from each other. Moreover the Unruh construction implies
existence of boundary condition at the common edge of - and -wedges in
Minkowski spacetime. Such boundary condition may be interpreted as a
topological obstacle which gives rise to a superselection rule prohibiting any
correlations between - and - Unruh particles. Thus the part of the field
from the -wedge in no way can influence a Rindler observer living in the
-wedge and therefore elimination of the invisible "left" degrees of freedom
will take no effect for him. Hence averaging over states of the field in one
wedge can not lead to thermalization of the state in the other. This result is
proved both in the standard and algebraic formulations of quantum field theory
and we conclude that principles of quantum field theory does not give any
grounds for existence of the "Unruh effect".Comment: 31 pages,1 figur
Intelligent data analysis to interpret major risk factors for diabetic patients with and without ischemic stroke in a small population
This study proposes an intelligent data analysis approach to investigate and interpret the distinctive factors of diabetes mellitus patients with and without ischemic (non-embolic type) stroke in a small population. The database consists of a total of 16 features collected from 44 diabetic patients. Features include age, gender, duration of diabetes, cholesterol, high density lipoprotein, triglyceride levels, neuropathy, nephropathy, retinopathy, peripheral vascular disease, myocardial infarction rate, glucose level, medication and blood pressure. Metric and non-metric features are distinguished. First, the mean and covariance of the data are estimated and the correlated components are observed. Second, major components are extracted by principal component analysis. Finally, as common examples of local and global classification approach, a k-nearest neighbor and a high-degree polynomial classifier such as multilayer perceptron are employed for classification with all the components and major components case. Macrovascular changes emerged as the principal distinctive factors of ischemic-stroke in diabetes mellitus. Microvascular changes were generally ineffective discriminators. Recommendations were made according to the rules of evidence-based medicine. Briefly, this case study, based on a small population, supports theories of stroke in diabetes mellitus patients and also concludes that the use of intelligent data analysis improves personalized preventive intervention
Synthesis, Electrical Measurement, and Field Emission Properties of α-Fe2O3Nanowires
α-Fe2O3nanowires (NWs) were formed by the thermal oxidation of an iron film in air at 350 °C for 10 h. The rhombohedral structure of the α-Fe2O3NWs was grown vertically on the substrate with diameters of 8–25 nm and lengths of several hundred nm. It was found that the population density of the NWs per unit area (DNWs) can be varied by the film thickness. The thicker the iron film, the more NWs were grown. The growth mechanism of the NWs is suggested to be a combination effect of the thermal oxidation rate, defects on the film, and selective directional growth. The electrical resistivity of a single NW with a length of 800 nm and a diameter of 15 nm was measured to be 4.42 × 103 Ωcm using conductive atomic force microscopy. The field emission characteristics of the NWs were studied using a two-parallel-plate system. A low turn–on field of 3.3 V/μm and a large current density of 10−3 A/cm2(under an applied field of about 7 V/μm) can be obtained using optimal factors ofDNWsin the cathode
Analysis of finite-buffer state-dependent bulk queues
<p>In this paper, we consider a general state-dependent finite-buffer bulk queue in which the rates and batch sizes of arrivals and services are allowed to depend on the number of customers in queue and service batch sizes. Such queueing systems have rich applications in manufacturing, service operations, computer and telecommunication systems. Interesting examples include batch oven processes in the aircraft and semiconductor industry; serving of passengers by elevators, shuttle buses, and ferries; and congestion control mechanisms to regulate transmission rates in packet-switched communication networks. We develop a unifying method to study the performance of this general class of finite-buffer state-dependent bulk queueing systems. For this purpose, we use semi-regenerative analysis to develop a numerically stable method for calculating the limiting probability distribution of the queue length process. Based on the limiting probabilities, we present various performance measures for evaluating admission control and batch service policies, such as the loss probability for an arriving group of customers and for individual customers within a group. We demonstrate our method by means of numerical examples.</p>
Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube
Molecular dynamic simulation method has been employed to consider the critical buckling force, pressure, and strain of pristine and defected single-walled carbon nanotube (SWCNT) under axial compression. Effects of length, radius, chirality, Stone–Wales (SW) defect, and single vacancy (SV) defect on buckling behavior of SWCNTs have been studied. Obtained results indicate that axial stability of SWCNT reduces significantly due to topological defects. Critical buckling strain is more susceptible to defects than critical buckling force. Both SW and SV defects decrease the buckling mode of SWCNT. Comparative approach of this study leads to more reliable design of nanostructures
Malaria mosquito control using edible fish in western Kenya: preliminary findings of a controlled study
<p>Abstract</p> <p>Background</p> <p>Biological control methods are once again being given much research focus for malaria vector control. This is largely due to the emerging threat of strong resistance to pesticides. Larvivorous fish have been used for over 100 years in mosquito control and many species have proved effective. In the western Kenyan highlands the larvivorous fish <it>Oreochromis niloticus </it>L. (Perciformes: Cichlidae) (formerly <it>Tilapia nilotica</it>) is commonly farmed and eaten but has not been previously tested in the field for malaria mosquito control.</p> <p>Methods</p> <p>This fish was introduced into abandoned fishponds at an altitude of 1,880 m and the effect measured over six months on the numbers of mosquito immatures. For comparison an untreated control pond was used. During this time, all ponds were regularly cleared of emergent vegetation and fish re-stocking was not needed. Significant autocorrelation was removed from the time series data, and t-tests were used to investigate within a pond and within a mosquito type any differences before and after the introduction of <it>O. niloticus</it>. Mulla's formula was also used on the raw data to calculate the percentage reduction of the mosquito larvae.</p> <p>Results</p> <p>After <it>O. niloticus </it>introduction, mosquito densities immediately dropped in the treated ponds but increased in the control pond. This increase was apparently due to climatic factors. Mulla's formula was applied which corrects for that natural tendency to increase. The results showed that after 15 weeks the fish caused a more than 94% reduction in both <it>Anopheles gambiae s.l</it>. and <it>Anopheles funestus </it>(Diptera: Culicidae) in the treated ponds, and more than 75% reduction in culicine mosquitoes. There was a highly significantly reduction in <it>A. gambiae s.l</it>. numbers when compared to pre-treatment levels.</p> <p>Conclusion</p> <p>This study reports the first field trial data on <it>O. niloticus </it>for malaria mosquito control and shows that this species, already a popular food fish in western Kenya, is an apparently sustainable mosquito control tool which also offers a source of protein and income to people in rural areas. There should be no problem with acceptance of this malaria control method since the local communities already farm this fish species.</p
- …