5 research outputs found

    Experimental investigation of methyl-orange removal using eco-friendly cost-effective materials raw fava bean peels and their formulated physical, and chemically activated carbon

    No full text
    The discharge of effluents from dye industries into water streams poses a significant environmental and public health risk. In response, eco-friendly adsorbents derived from agricultural waste, such as Fava Bean Peels (R–FBP), have been investigated as potential materials for the removal of such pollutants. In this study, R–FBP and their corresponding physical and chemically activated carbon (P-RFB-AC and C-FBP-AC) were synthesized using H3PO4 acid and characterized using FT-IR, and SEM analyses. An optimization process was conducted to determine the optimum conditions for achieving high Methyl Orange (M. Orange) removal efficiencies using the prepared materials, namely R–FBP, P-RFB-AC, and C-FBP-AC. The adsorption mechanism was examined by analyzing the isotherm and kinetics. The results revealed that the physical raw-activated carbon exhibited the highest removal efficiency of 96.8% compared to other materials. This outcome was achieved through the use of ANN combined with Moth Search Algorithm (MSA), which was found to be the most effective model for achieving the highest M. Orange removal efficiency from Physical raw fava bean activated carbon. Under parameters of 1000 mg/l M. Orange concentration, 2 g/l dose, 15 min contact time, and 120 rpm shaking, the best experimental and predicted removal efficiencies for physical-activated carbon fava bean rind were 96.8 RE%, 96.01 indicated RSM RE%, and 95.75 predicted ANN RE%. The highest experimental and predicted removal efficiencies for the H3PO4 chemical activated carbon fava bean peel were 94%RE. This study aimed to develop an economical solution for treating industrial wastewater contaminated with anionic M. Orange dye using raw fava bean peel and their generated activated carbon, in both physical and chemical forms. The Temkin and Langmuir isotherm models were found to best fit the data for raw fava bean peel, while Temkin agreed well with the data from physical-activated carbon. Temkin and Freundlich's models were fitted with the H3PO4 chemical activated carbon. Pseudo-second-order kinetics was identified as the most suitable model for both physically and chemically activated carbons. Future research may explore the capacity of the produced activated carbon-based algae to extract a wider range of contaminants from contaminated wastewater. In summary, this work contributes to the development of eco-friendly and cost-effective methods for removing dyes, specifically M. Orange, from industrial effluents. By synthesizing and characterizing R–FBP and their relative activated carbon, the adsorption mechanism was studied, and the optimum conditions for achieving high M. Orange removal efficiencies were determined. The results showed that physical raw-activated carbon exhibited the highest removal efficiency, and pseudo-second-order kinetics was the most suitable model for both physically and chemically activated carbon

    Enhanced removal of crystal violet using rawfava bean peels, its chemically activated carbon compared with commercial activated carbon

    No full text
    Crystal violet is a basic dye that is widely used by various industries, such as textiles and paints. These industries discharge their effluents, contaminated with crystal violet, into water streams, and these effluents have an adverse effect on aquatic organisms, the environment, and human health. Crystal violet is a basic dye that is widely used by various industries, such as textiles and paints. These industries discharge their effluents, contaminated with crystal violet, into water streams, and these effluents have an adverse effect on aquatic organisms, the environment, and human health. Hence, this paper is directed at studying the removal of crystal violet using environmentally friendly, cost-effective adsorbent materials such as raw fava bean (RFP-H3F), and chemically activated carbon (H3F) in comparison to commercial activated carbon (CAC).Various characterization techniques are applied, such as XRD, FT-IR,and SEM analyses. Then, the process of optimizing is shown through some preliminary experiments and a Response Surface Methodology (RSM) experiment to find the best conditions for removing crystal violet efficiently. Results revealed that the raw fava bean peels and the commercial activated carbon have the maximum removal efficiency of 95 %, and 83 % respectively, after 180 min of contact time. It is hypothesized that raw fava bean peels (RFP) and chemically activated carbon using phosphoric acid RFP-H3F will exhibit comparable efficiency in removing crystal violet when compared to commercial activated carbon (CAC). Various characterization techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR),and scanning electron microscopy (SEM), are applied to analyze the properties of the adsorbent materials. Afterwards, the optimization process is displayed through some preliminary experiments followed by a Response Surface Methodology (RSM) experiment to obtain the optimum conditions, which achieve high crystal violet removal efficiency. The results demonstrate that both raw fava bean peels and commercial activated carbon exhibit significant removal efficiencies, with raw fava bean peels achieving a maximum removal efficiency of 95 % and commercial activated carbon achieving 83 %

    A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN

    No full text
    The textile business is one of the most hazardous industries since it produces several chemicals, such as dyes, which are released into water streams with ef-fluents. For the survival of the planet's life and the advancement of humanity, water is a crucial resource. One of the anthropogenic activities that pollute and consume water is the textile industry. Thus, the purpose of the current effort is to Apply coagulation as a Physico-chemical and biological treatment strat-egy with different techniques and mechanisms to treat the effluent streams of textile industries. The discharge of these effluents has a negative impact on the environment, marine life, and human health. Therefore, the treatment of these effluents before discharging is an important matter to reduce their adverse ef-fect. Many physico-chemical and biological treatment strategies for contaminants removal from polluted wastewater have been proposed. Coagulation is thought to be one of the most promising physico-chemical strategies for removing con-taminants and colouring pollutants from contaminated water. Coagulation is accompanied by a floculation process to aid precipitation, as well as the collection of the created sludge following the treatment phase.. Different commercial, and natural coagulants have been applied as a coagulants in the process of coagulation. Additionally, many factors such as; pH, coagulant dose, pollu-tants concentration are optimized to obtain high coagulants removal capacity. This review will discuss the coagulation process, coagulant types and aids in addition to the factors affecting the coagulation process. Additionally, a brief comparison between the coagulation process, and the other processes; princi-ple, advantages, disadvantages, and their efficiency were discussed throgh the review. Furthermore, it discusses the models and optimization techniques used for the coagulation process including response surface methodology (RSM), ar-tificial neural network (ANN), and several metaheuristic algorithms combined with ANN and RSM for optimization in previous work. The ANN model has more accurate results than RSM. The ANN combined with genetic algorithm gives an accurate predicted optimum solution

    Potentials of algae-based activated carbon for the treatment of M.orange in wastewater

    No full text
    Activated carbon is a promising material with high efficiency in dye removal from polluted wastewater. However, commercial activated carbon is expensive and generates black color in the medium. Therefore, searching for low-cost, eco-friendly activated carbon sources such as agricultural wastes and algal biomasses is essential. Hence, this study is directed to prepare the physical and the H3PO4 chemical activated carbon from the algae ”Sargassum dent folium” and the raw algae itself and apply it for Methyl Orange (M. orange) removal from contaminated wastewater and compare its performance with the commercial activated carbon. First, adsorbent materials are prepared and involved in the optimization process for M. orange removal using some preliminary experiments, followed by Response Surface Method-ology (RSM) and Artificial Neural Network (ANN). Finally, Isotherm and kinetics are studied to explain the adsorption mechanism. In contrast to other materials, results show that physical algae-activated carbon achieves the maximum removal efficiency of 96.687%. These results are obtained from ANN combined with Moth Search Algorithm (MSA), representing the most effective model for achieving the highest M. orange removal efficiency from Physical algae activated carbon. In the algae case, the best experimental and predicted removal efficiencies are 85.9407 RE%, 88.5 indicated RSM RE%, and 85.9431 predicted ANN RE%. The best observed and predicted removal efficiencies for the H3PO4 chemical activated carbon are 89.6157 RE%, 82.38 predicted RSM RE%, and 89.5442 predicted ANN RE%. The best experimental and predicted removal efficiencies for the physical-activated carbon are 94.7935 RE%, 95.49 indicated RSM RE%, and 95.4298 predicted ANN RE%. The best observed and predicted removal efficiencies for the commercial-activated carbon are 92.2659 RE%, 96.65 predicted RSM RE%, and 92.2658 predicted ANN RE%. In the algae case, the best experimental and predicted removal efficiencies are 85.9407 %RE, 88.5 predicted RSM RE %, and 85.9431 expected ANN RE%. For the H3PO4 chemical activated carbon, the best experimental and predicted removal efficiencies are 89.6157%RE, 82.38 indicated RSM RE%, and 89.5442 predicted ANN RE%. For the physical-activated carbon, the best observed and predicted removal efficiencies are 94.7935 %RE, 95.49 predicted RSM RE%, and 95.4298 indicated ANN RE%. For the commercial-activated carbon, the best experimental and predicted removal efficiencies are 92.2659 %RE, 96.65 predicted RSM RE%, and 92.2658 predicted ANN RE%. This study intends to treat industrial wastewater contaminated with the anionic M. orange dye using raw algae and their generated activated carbon (physical and chemical forms), which are economical. It then compares the results to the effectiveness of commercial activated carbon. In the state of the raw algae, Temkin and Langmuir isotherm models best suit the data, while Temkin agrees well with the data from physical-activated carbon. Temkin and Freundlich's models are fitted with the H3PO4 chemical activated carbon. The model that fits the raw algae physically activated carbon and H3PO4 chemical-activated carbon the best is pseudo-second-order kinetics. Future research could examine the produced activated carbon-based algae's capacity to extract more contaminants from contaminated wastewater. This study intends to treat industrial wastewater contaminated with the anionic M. orange dye using raw algae and their generated activated carbon (physical and chemical forms), which are economical. It next compares the results to the effectiveness of commercial activated carbon
    corecore