96 research outputs found
The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth
Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming
Corticosterone alters materno-fetal glucose partitioning and insulin signalling in pregnant mice.
Glucocorticoids affect glucose metabolism in adults and fetuses, although their effects on materno-fetal glucose partitioning remain unknown. The present study measured maternal hepatic glucose handling and placental glucose transport together with insulin signalling in these tissues in mice drinking corticosterone either from day (D) 11 to D16 or D14 to D19 of pregnancy (term = D21). On the final day of administration, corticosterone-treated mice were hyperinsulinaemic (P 0.05). Insulin receptor and insulin-like growth factor type I receptor abundance did not differ with treatment in either tissue. Corticosterone upregulated the stress-inducible mechanistic target of rapamycin (mTOR) suppressor, Redd1, in liver (D16 and D19) and placenta (D19), in ad libitum fed animals (P < 0.05). Concomitantly, hepatic protein content and placental weight were reduced on D19 (P < 0.05), in association with altered abundance and/or phosphorylation of signalling proteins downstream of mTOR. Taken together, the data indicate that maternal glucocorticoid excess reduces fetal growth partially by altering placental glucose transport and mTOR signalling.The studies described in this manuscript were supported by a graduate studentship to ORV from the Centre for Trophoblast Research in Cambridge.This is the accepted manuscript of a paper published in The Journal of Physiology Volume 593, Issue 5, pages 1307–1321, 1 March 2015, DOI: 10.1113/jphysiol.2014.28717
A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development.
The paternally expressed imprinted retrotransposon-like 1 (Rtl1) is a retrotransposon-derived gene that has evolved a function in eutherian placentation. Seven miRNAs, including miR-127, are processed from a maternally expressed antisense Rtl1 transcript (Rtl1as) and regulate Rtl1 levels through RNAi-mediated post-transcriptional degradation. To determine the relative functional role of Rtl1as miRNAs in Rtl1 dosage, we generated a mouse specifically deleted for miR-127. The miR-127 knockout mice exhibit placentomegaly with specific defects within the labyrinthine zone involved in maternal-fetal nutrient transfer. Although fetal weight is unaltered, specific Rtl1 transcripts and protein levels are increased in both the fetus and placenta. Phenotypic analysis of single (ΔmiR-127/Rtl1 or miR-127/ΔRtl1) and double (ΔmiR-127/ΔRtl1) heterozygous miR-127- and Rtl1-deficient mice indicate that Rtl1 is the main target gene of miR-127 in placental development. Our results demonstrate that miR-127 is an essential regulator of Rtl1, mediated by a trans-homologue interaction between reciprocally imprinted genes on the maternally and paternally inherited chromosomes.This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and Medical Research Council (MRC) and EU FP7 Marie Curie Action 290123 (INGENIUM). This work was partly funded by a National Health and Medical Research Council (NHMRC) CJ Martin Biomedical Fellowship to A.N.S.P.This is the accepted manuscript. The final version is available at http://dev.biologists.org/content/early/2015/07/01/dev.121996.abstract
Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy
Although neutrophils are known to be fundamental in controlling innate immune responses, their role in regulating adaptive immunity is just starting to be appreciated. We report that human neutrophils exposed to pregnancy hormones progesterone and estriol promote the establishment of maternal tolerance through the induction of a population of CD4 T cells displaying a GARPCD127FOXP3 phenotype following antigen activation. Neutrophil-induced T (niT) cells produce IL-10, IL-17, and VEGF and promote vessel growth in vitro. Neutrophil depletion during murine pregnancy leads to abnormal development of the fetal-maternal unit and reduced empbryo development, with placental architecture displaying poor trophoblast invasion and spiral artery development in the maternal decidua, accompanied by significantly attenuated niT cell numbers in draining lymph nodes. Using CD45 congenic cells, we show that induction of niT cells and their regulatory function occurs via transfer of apoptotic neutrophil-derived proteins, including forkhead box protein 1 (FOXO1), to T cells. Unlike in women with healthy pregnancies, neutrophils from blood and placental samples of preeclamptic women fail to induce niT cells as a direct consequence of their inability to transfer FOXO1 to T cells. Finally, neutrophil-selective FOXO1 knockdown leads to defective placentation and compromised embryo development, similar to that resulting from neutrophil depletion. These data define a nonredundant function of neutrophil-T cell interactions in the regulation of vascularization at the maternal-fetal interface.S.N. and M.P. were supported by the Wellcome Trust (Programme 086867/Z/08/Z). F.M.M.-B. is supported by the British Heart Foundation (CH/15/2/32064). D.J.W. is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. S.H.P.F. is a Research Fellow at CNPq. This work is part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institutes of Health Research
Study protocol for an observational cohort study of heat stress impacts in pregnancy in The Gambia, West Africa [version 1; peer review: awaiting peer review]
Climate change has resulted in an increase in heat exposure globally. There is strong evidence that this increased heat stress is associated with poor maternal and fetal outcomes, especially in vulnerable populations. However, there remains poor understanding of the biological pathways and mechanisms involved in the impact of heat in pregnancy. This observational cohort study of 764 pregnant participants based in sub-Saharan Africa, a geographical region at risk of extreme heat events, aims to evaluate the physiological and biochemical changes that occur in pregnancy due to heat stress. The key objectives of the study are to 1) map exposure to heat stress in the cohort and understand what environmental, social and community factors increase the risk of extreme heat exposure; 2) assess the impact of heat stress on maternal health, e.g. heat strain, subjective psychological well-being, sleep and activity level; 3) evaluate how heat stress impacts placenta structure and function; 4) determine how chronic heat exposure impacts birth outcomes; and 5) explore the epigenetic changes in the placenta and infant by heat stress exposure per trimester. Pregnant women will be recruited from two distinct regions in The Gambia to exploit the naturally occurring heat gradient across the country. Microclimate mapping of the area of recruitment will give detailed exposure measurements. Participants will be asked to wear a watch-style device at 28- and 35-weeks gestational age to evaluate maternal heart rate, activity and sleep. At the end of the week, an ultrasound scan will be performed to evaluate fetal size and placental blood flow. At delivery, birth outcomes will be recorded and maternal, placental and cord samples taken for epigenetic, biochemical and histological evaluation. Evaluation of neuro-behaviour and final infant samples will be taken at 1 month following birth.</ns3:p
A hypomorphic Cbx3 allele causes prenatal growth restriction and perinatal energy homeostasis defects
Mammals have three HP1 protein isotypes HP1β (CBX1), HP1γ (CBX3) and HP1α (CBX5) that are encoded by the corresponding genes Cbx1, Cbx3 and Cbx5. Recent work has shown that reduction of CBX3 protein in homozygotes for a hypomorphic allele (Cbx3 hypo) causes a severe postnatal mortality with around 99% of the homozygotes dying before weaning. It is not known what the causes of the postnatal mortality are. Here we show that Cbx3 hypo/hypo conceptuses are significantly reduced in size and the placentas exhibit a haplo-insufficiency. Late gestation Cbx3 hypo/hypo placentas have reduced mRNA transcripts for genes involved in growth regulation, amino acid and glucose transport. Blood vessels within the Cbx3 hypo/hypo placental labyrinth are narrower than wild-type. Newborn Cbx3 hypo/hypo pups are hypoglycemic, the livers are depleted of glycogen reserves and there is almost complete loss of stored lipid in brown adipose tissue (BAT). There is a 10-fold reduction in expression of the BAT-specific Ucp1 gene, whose product is responsible for non-shivering themogenesis. We suggest that it is the small size of the Cbx3 hypo/hypo neonates, a likely consequence of placental growth and transport defects, combined with a possible inability to thermoregulate that causes the severe postnatal mortality
Maternal levels of endocrine disruptors, polybrominated diphenyl ethers, in early pregnancy are not associated with lower birth weight in the Canadian birth cohort GESTE
Abstract: Background: Polybrominated diphenyl ethers are known endocrine disrupting environmental contaminants used as flame retardants. Their levels have increased in humans over the last ten years, raising concerns about their consequences on human health. Some animal studies suggest that PBDEs can affect fetal growth; however, the results of human studies are contradictory. This study evaluates the association between the most common PBDEs in maternal blood measured in early pregnancy and birth weight. Methods: BDE-47, BDE-99, BDE-100 and BDE-153 levels were measured in 349 women during their first prenatal care visit at the University Hospital Center of Sherbrooke (Quebec, Canada). Birth weight and relevant medical information were collected from medical records. In contrast with previous studies, we examined the full range of clinical risk factors known to affect fetal growth as potential confounders, as well as other environmental pollutants that are likely to interact with fetal growth (polychlorinated biphenyls (PCBs), mercury, lead, cadmium and manganese). Results: There was no statistically significant relationship between PBDE levels in early pregnancy and birth weight in both unadjusted and multivariate regression models. Conclusions: Our results suggest that PBDEs in early pregnancy have little or no direct impact on birth weight, at least at the levels of exposure in our population
Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy
In the first trimester the extravillous cytotrophoblast cells occlude the uterine spiral arterioles creating a low oxygen environment early in pregnancy, which is essential for pregnancy success. Paradoxically, shallow trophoblast invasion and defective vascular remodelling of the uterine spiral arteries in the first trimester may result in impaired placental perfusion and chronic placental ischemia and hypoxia later in gestation leading to adverse pregnancy outcomes. The hypoxia inducible factors (HIFs) are key mediators of the response to low oxygen. We aimed to elucidate mechanisms of regulation of HIFs and the role these may play in the control of placental differentiation, growth and function in both normal and pathological pregnancies. The Pubmed database was consulted for identification of the most relevant published articles. Search terms used were oxygen, placenta, trophoblast, pregnancy, HIF and hypoxia. The HIFs are able to function throughout all aspects of normal and abnormal placental differentiation, growth and function; during the first trimester (physiologically low oxygen), during mid-late gestation (where there is adequate supply of blood and oxygen to the placenta) and in pathological pregnancies complicated by placental hypoxia/ischemia. During normal pregnancy HIFs may respond to complex alterations in oxygen, hormones, cytokines and growth factors to regulate placental invasion, differentiation, transport and vascularization. In the ever-changing environment created during pregnancy, the HIFs appear to act as key mediators of placental development and function and thereby are likely to be important contributors to both normal and adverse pregnancy outcomes
- …