25 research outputs found

    Improving telecommunication security level by integrating quantum key distribution in communication protocols

    No full text
    Résumé La cryptographie classique est basée sur des concepts mathématiques dont la sécurité dépend de la complexité du calcul de l'inverse des fonctions. Ce type de chiffrement est à la merci de la puissance de calcul des ordinateurs ainsi que la découverte d'algorithme permettant le calcul des inverses de certaines fonctions mathématiques en un temps «raisonnable ». L'utilisation d'un procédé dont la sécurité est scientifiquement prouvée s'avère donc indispensable surtout les échanges critiques (systèmes bancaires, gouvernements,...). La cryptographie quantique répond à ce besoin. En effet, sa sécurité est basée sur des lois de la physique quantique lui assurant un fonctionnement inconditionnellement sécurisé. Toutefois, l'application et l'intégration de la cryptographie quantique sont un souci pour les développeurs de ce type de solution. Cette thèse justifie la nécessité de l'utilisation de la cryptographie quantique. Elle montre que le coût engendré par le déploiement de cette solution est justifié. Elle propose un mécanisme simple et réalisable d'intégration de la cryptographie quantique dans des protocoles de communication largement utilisés comme les protocoles PPP, IPSec et le protocole 802.1li. Des scénarios d'application illustrent la faisabilité de ces solutions. Une méthodologie d'évaluation, selon les critères communs, des solutions basées sur la cryptographie quantique est également proposée dans ce document. Abstract Classical cryptography is based on mathematical functions. The robustness of a cryptosystem essentially depends on the difficulty of computing the inverse of its one-way function. There is no mathematical proof that establishes whether it is impossible to find the inverse of a given one-way function. Therefore, it is mandatory to use a cryptosystem whose security is scientifically proven (especially for banking, governments, etc.). On the other hand, the security of quantum cryptography can be formally demonstrated. In fact, its security is based on the laws of physics that assure the unconditional security. How is it possible to use and integrate quantum cryptography into existing solutions? This thesis proposes a method to integrate quantum cryptography into existing communication protocols like PPP, IPSec and the 802.l1i protocol. It sketches out some possible scenarios in order to prove the feasibility and to estimate the cost of such scenarios. Directives and checkpoints are given to help in certifying quantum cryptography solutions according to Common Criteria

    Guaranteering security of financial transaction by using quantum cryptography in banking environment

    No full text
    Protocols and applications could profit of quantum cryptography to secure communications. The applications of quantum cryptography are linked to telecommunication services that require very high level of security such as bank transactions. The aim of this paper is to present the possibility to use quantum cryptography in critical financial transactions, to analyse the use of quantum key distribution within IPSEC to secure these transactions and to present the estimated performances of this solution. After having introduced basic concepts in quantum cryptography, we describe a scenario of using quantum key distribution in bank transactions in Switzerland. Then, we propose a solution that integrate quantum key distribution into IPSEC. A performance analysis is done to demonstrate the operational feasibility of this solution

    Upgrading PPP security by Quantum Key Distribution

    No full text
    Quantum cryptography could be integrated in various existing concepts and protocols to secure communications that require very high level of security. The aim of this paper is to analyse the use of quantum cryptography within PPP. We introduce basic concepts of the Point to Point Protocol; we propose a solution that integrates quantum key distribution into PPP. An example is given to demonstrate the operational feasibility of this solutio
    corecore