11 research outputs found

    Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping:implication for a role of lactate

    No full text
    Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen—CMRO(2)) to CBF and CMR(glc). To test whether the mismatch reflects a specific role of aerobic glycolysis during functional brain activation, we determined CBF and CMRO(2) with positron emission tomography (PET) when 12 healthy volunteers executed finger-to-thumb apposition of the right hand. Movements began 1, 10, or 20 minutes before administration of the radiotracers. In primary and supplementary motor cortices and cerebellum, CBF had increased at 1 minute of exercise and remained elevated for the duration of the 20-minute session. In contrast, the CMRO(2) numerically had increased insignificantly in left M1 and supplementary motor area at 1 minute, but had declined significantly at 10 minutes, returning to baseline at 20 minutes. As measures of CMR(glc) are impossible during short-term activations, we used measurements of CBF as indices of CMR(glc). The decline of CMRO(2) at 10 minutes paralleled a calculated decrease of OGI at this time. The implied generation of lactate in the tissue suggested an important hypothetical role of the metabolite as regulator of CBF during activation

    Nutritional Status of the Community-dwelling Elderly in Tabriz, Iran

    No full text
    Introduction: Nutrition is an important determinant of health in the elderly. Older people are more susceptible to malnutrition that leaves adverse effects on their health. This study aimed to evaluate the nutritional status of the community-dwelling elderly in Tabriz City. &nbsp; Methods: This cross-sectional study was conducted among non- institutionalized older people in Tabriz, Iran. A total of 1041 older adults (506 men and 535 women) were randomly selected based on Probability Proportional to Size sampling method. Data collection and evaluation of nutritional status using Mini Nutritional Assessment Short-Form, were conducted in the participants&rsquo; households. &nbsp; Results: Of all participants, 2.5% (CI 95%; 1.7-3.6) suffered from malnutrition, 26.7% (CI 95%; 24.1%-29.5%) were at risk of malnutrition, and 70.8% (CI 95%; 68.0%-73.5%) had normal nutritional status. Malnutrition and risk of malnutrition were more prevalent in elderly women than men (malnutrition: 2.6% vs. 2.4%, risk of malnutrition: 30.3% vs. 22.9%, p = 0.024) and in single than married elderly (3.9% vs. 2.0%, p < 0.001). Moreover, it had an upward trend with increasing age and decreasing educational level. &nbsp; Conclusion: Although most of the elderly people were nutritionally in normal status, a significant proportion were at risk of malnutrition that strengthens the need for designing and implementing appropriate interventions to improve lifestyle and prevent malnutrition in the elderly people

    The neural effects of oxytocin administration in autism spectrum disorders studied by fMRI: A systematic review.

    No full text
    PURPOSE Oxytocin (OXT) is a hypothalamic neuropeptide that is released from the posterior pituitary gland and at specific targets in the central nervous system (CNS). The prosocial effects of OXT acting in the CNS present it as a potential therapeutic agent for the treatment of aspects of autism spectrum disorder (ASD). In this article, we systematically review the functional MRI (fMRI) literature that reports task-state and resting-state fMRI (rsfMRI) studies of the neural effects of single or multiple dose intranasal OXT (IN-OXT) administration in individuals with ASD. METHOD We searched four databases for relevant documents (PubMed, Web of Science, Scopus, and Google Scholar) using the keywords "autism spectrum disorder", "Asperger Syndrome", "oxytocin", and "fMRI". Moreover, we made a manual search to assess the quality of our automatic search. The search was confined to English language articles published in the interval February 2013 until March 2021. RESULTS The search yielded 12 fMRI studies with OXT intervention, including 288 individuals with ASD (age 8-55 years) enrolled in randomized, double-blind, placebo-controlled, parallel designs, within-subject-crossover experimental OXT trials. Studies reporting activation task and rsfMRI were summarized with region of interest (ROI) or whole-brain voxel wise analysis. The systematic review of the 12 studies supported the proposition that IN-OXT administration alters brain activation in individuals with ASD. The effects of IN-OXT interacted with the type of the task and the overall results did not indicate restoration of normal brain activation in ASD signature regions albeit the lack of statistical evidence. CONCLUSION A large body of evidence consistently indicates that OXT alters activation to fMRI in brain networks of individuals with ASD, but with uncertain implications for alleviation of their social deficits

    On the learning of addictive behavior:Sensation-seeking propensity predicts dopamine turnover in dorsal striatum

    No full text
    We asked if sensation-seeking is linked to premorbid personality characteristics in patients with addictive disorders, or the characteristics follow the sensation-seeking activity. We interpreted the former as a state associated with normal rates of dopamine synthesis, and the latter as a trait of individuals with abnormally high rates of synthesis. We previously determined dopaminergic receptor density in striatum, and we now tested the hypothesis that an elevated dopaminergic condition with increased extracellular dopamine and receptor density follows increased dopamine synthesis capacity in highly sensation-seeking individuals, as measured by positron emission tomography of 18 men with tracer fluorodopa (FDOPA). We detected a site in left caudate nucleus where the volume of distribution of FDOPA-derived metabolites correlated negatively with FDOPA metabolite turnover, consistent with decreased metabolite breakdown in highly sensation-seeking subjects. High rates of sensation-seeking attenuated the dopamine turnover in association with a low rate of dopamine recycling, low dopamine oxidation, and elevated extracellular dopamine and receptors in caudate nucleus. In contrast, low rates of sensation-seeking were associated with rapid dopamine recycling, rapid dopamine oxidation, low extracellular dopamine, and low receptor density. We conclude that the modulation of dopaminergic neurotransmission associated with sensation-seeking is a state of sensation-seeking, rather than a trait of personality following abnormal regulation of dopaminergic neurotransmission. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11682-021-00509-5

    Brain energy metabolism and blood flow differences in healthy aging

    No full text
    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors find decreases of both CBF and CMRO(2) but increased OEF, while others find no change, and yet other find divergent changes. In this reanalysis of previously published results from positron emission tomography of healthy volunteers, we determined CMRO(2) and CBF in 66 healthy volunteers aged 21 to 81 years. The magnitudes of CMRO(2) and CBF declined in large parts of the cerebral cortex, including association areas, but the primary motor and sensory areas were relatively spared. We found significant increases of OEF in frontal and parietal cortices, excluding primary motor and somatosensory regions, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions most affected by age are the areas that are most vulnerable to neurodegeneration
    corecore