55 research outputs found

    Reentrant phase transition of Born-Infeld-dilaton black holes

    Full text link
    We explore a novel reentrant phase transition of four-dimensional Born-Infeld-dilaton black hole in which the first order phase transition modify into a zeroth order phase transition below the critical point. Working in the extended phase space with regarding the cosmological constant as a pressure, we study the reentrant behavior of phase transition in the canonical ensemble. We show that these black holes enjoy a zeroth order intermediate-small black hole phase transition as well as a first order phase transition between small and large black holes for a narrow range of temperatures and pressures. We also find that the standard first order small-large black hole phase transition can modify into a zeroth order type. This zeroth order phase transition stands between the critical point and the first order phase transition region. We discuss the significant effect of the scalar field (dilaton) on the mentioned interesting treatment.Comment: 9 pages, 5 figures, 2 tables. A section added. Accepted in EPJ

    Criticality and extended phase space thermodynamics of AdS black holes in higher curvature massive gravity

    Full text link
    Considering de Rham-Gabadadze-Tolley theory of massive gravity coupled with (ghost free) higher curvature terms arisen from the Lovelock Lagrangian, we obtain charged AdS black hole solutions in diverse dimensions. We compute thermodynamic quantities in the extended phase space by considering the variations of the negative cosmological constant, Lovelock coefficients (αi\alpha_{i}) and massive couplings (cic_{i}), and prove that such variations is necessary for satisfying the extended first law of thermodynamics as well as associated Smarr formula. In addition, by performing a comprehensive thermal stability analysis for the topological black hole solutions, we show in what regions thermally stable phases exist. Calculations show the results are radically different from those in Einstein gravity. Furthermore, we investigate P−VP-V criticality of massive charged AdS black holes in higher dimensions, including the effect of higher curvature terms and massive parameter, and find that the critical behavior and phase transition can happen for non-compact black holes as well as spherically symmetric ones. The phase structure and critical behavior of topological AdS black holes are drastically restricted by the geometry of event horizon. In this regard, the universal ratio, i.e. PcvcTc\frac{{{P_c}{v_c}}}{{{T_c}}}, is a function of the event horizon topology. It is shown the phase structure of AdS black holes with non-compact (hyperbolic) horizon could give birth to three critical points corresponds to a reverse van der Waals behavior for phase transition which is accompanied with two distinct van der Waals phase transitions. For black holes with spherical horizon, the van der Waals, reentrant and analogue of solid/liquid/gas phase transitions are observed.Comment: 36 pages, 22 Figure
    • …
    corecore