139 research outputs found

    A Note on the correspondence between Qubit Quantum Operations and Special Relativity

    Full text link
    We exploit a well-known isomorphism between complex hermitian 2Ă—22\times 2 matrices and R4\mathbb{R}^4, which yields a convenient real vector representation of qubit states. Because these do not need to be normalized we find that they map onto a Minkowskian future cone in E1,3\mathbb{E}^{1,3}, whose vertical cross-sections are nothing but Bloch spheres. Pure states are represented by light-like vectors, unitary operations correspond to special orthogonal transforms about the axis of the cone, positive operations correspond to pure Lorentz boosts. We formalize the equivalence between the generalized measurement formalism on qubit states and the Lorentz transformations of special relativity, or more precisely elements of the restricted Lorentz group together with future-directed null boosts. The note ends with a discussion of the equivalence and some of its possible consequences.Comment: 6 pages, revtex, v3: revised discussio

    Uniqueness of the mass in the radiating regime

    Get PDF
    The usual approaches to the definition of energy give an ambiguous result for the energy of fields in the radiating regime. We show that for a massless scalar field in Minkowski space-time the definition may be rendered unambiguous by adding the requirement that the energy cannot increase in retarded time. We present a similar theorem for the gravitational field, proved elsewhere, which establishes that the Trautman-Bondi energy is the unique (up to a multiplicative factor) functional, within a natural class, which is monotonic in time for all solutions of the vacuum Einstein equations admitting a smooth ``piece'' of conformal null infinity Scri.Comment: 8 pages, revte

    Third post-Newtonian constrained canonical dynamics for binary point masses in harmonic coordinates

    Full text link
    The conservative dynamics of two point masses given in harmonic coordinates up to the third post-Newtonian (3pN) order is treated within the framework of constrained canonical dynamics. A representation of the approximate Poincar\'e algebra is constructed with the aid of Dirac brackets. Uniqueness of the generators of the Poincar\'e group resp. the integrals of motion is achieved by imposing their action on the point mass coordinates to be identical with that of the usual infinitesimal Poincar\'e transformations. The second post-Coulombian approximation to the dynamics of two point charges as predicted by Feynman-Wheeler electrodynamics in Lorentz gauge is treated similarly.Comment: 42 pages, submitted to Phys. Rev.

    Irreducible Multiplets of Three-Quark Operators on the Lattice: Controlling Mixing under Renormalization

    Full text link
    High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of three-quark operators. These can be calculated from first principles in lattice QCD. However, on the lattice the problems of operator mixing under renormalization are rather involved. In a systematic approach we investigate this issue in depth. Using the spinorial symmetry group of the hypercubic lattice we derive irreducibly transforming three-quark operators, which allow us to control the mixing pattern.Comment: 13 page

    Relative entropy, Haar measures and relativistic canonical velocity distributions

    Get PDF
    The thermodynamic maximum principle for the Boltzmann-Gibbs-Shannon (BGS) entropy is reconsidered by combining elements from group and measure theory. Our analysis starts by noting that the BGS entropy is a special case of relative entropy. The latter characterizes probability distributions with respect to a pre-specified reference measure. To identify the canonical BGS entropy with a relative entropy is appealing for two reasons: (i) the maximum entropy principle assumes a coordinate invariant form; (ii) thermodynamic equilibrium distributions, which are obtained as solutions of the maximum entropy problem, may be characterized in terms of the transformation properties of the underlying reference measure (e.g., invariance under group transformations). As examples, we analyze two frequently considered candidates for the one-particle equilibrium velocity distribution of an ideal gas of relativistic particles. It becomes evident that the standard J\"uttner distribution is related to the (additive) translation group on momentum space. Alternatively, imposing Lorentz invariance of the reference measure leads to a so-called modified J\"uttner function, which differs from the standard J\"uttner distribution by a prefactor, proportional to the inverse particle energy.Comment: 15 pages: extended version, references adde

    Gauge Field Theory Coherent States (GCS) : II. Peakedness Properties

    Full text link
    In this article we apply the methods outlined in the previous paper of this series to the particular set of states obtained by choosing the complexifier to be a Laplace operator for each edge of a graph. The corresponding coherent state transform was introduced by Hall for one edge and generalized by Ashtekar, Lewandowski, Marolf, Mour\~ao and Thiemann to arbitrary, finite, piecewise analytic graphs. However, both of these works were incomplete with respect to the following two issues : (a) The focus was on the unitarity of the transform and left the properties of the corresponding coherent states themselves untouched. (b) While these states depend in some sense on complexified connections, it remained unclear what the complexification was in terms of the coordinates of the underlying real phase space. In this paper we resolve these issues, in particular, we prove that this family of states satisfies all the usual properties : i) Peakedness in the configuration, momentum and phase space (or Bargmann-Segal) representation, ii) Saturation of the unquenched Heisenberg uncertainty bound. iii) (Over)completeness. These states therefore comprise a candidate family for the semi-classical analysis of canonical quantum gravity and quantum gauge theory coupled to quantum gravity, enable error-controlled approximations and set a new starting point for {\it numerical canonical quantum general relativity and gauge theory}. The text is supplemented by an appendix which contains extensive graphics in order to give a feeling for the so far unknown peakedness properties of the states constructed.Comment: 70 pages, LATEX, 29 figure

    Relativistic Chasles' theorem and the conjugacy classes of the inhomogeneous Lorentz group

    Full text link
    This work is devoted to the relativistic generalization of Chasles' theorem, namely to the proof that every proper orthochronous isometry of Minkowski spacetime, which sends some point to its chronological future, is generated through the frame displacement of an observer which moves with constant acceleration and constant angular velocity. The acceleration and angular velocity can be chosen either aligned or perpendicular, and in the latter case the angular velocity can be chosen equal or smaller than than the acceleration. We start reviewing the classical Euler's and Chasles' theorems both in the Lie algebra and group versions. We recall the relativistic generalization of Euler's theorem and observe that every (infinitesimal) transformation can be recovered from information of algebraic and geometric type, the former being identified with the conjugacy class and the latter with some additional geometric ingredients (the screw axis in the usual non-relativistic version). Then the proper orthochronous inhomogeneous Lorentz Lie group is studied in detail. We prove its exponentiality and identify a causal semigroup and the corresponding Lie cone. Through the identification of new Ad-invariants we classify the conjugacy classes, and show that those which admit a causal representative have special physical significance. These results imply a classification of the inequivalent Killing vector fields of Minkowski spacetime which we express through simple representatives. Finally, we arrive at the mentioned generalization of Chasles' theorem.Comment: Latex2e, 49 pages. v2: few typos correcte

    Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation

    Full text link
    The properties of the Volume operator in Loop Quantum Gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. The present analysis benefits from the general simplified formula for matrix elements of the Volume operator derived in gr-qc/0405060, making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to arXiv:0706.0469, providing details of the analysis presented there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008. More compact presentation. Sign factor combinatorics now much better understood in context of oriented matroids, see arXiv:1003.2348, where also important remarks given regarding sigma configurations. Subsequent computations revealed some minor errors, which do not change qualitative results but modify some numbers presented her

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her

    Poincare gauge invariance and gravitation in Minkowski spacetime

    Full text link
    A formulation of Poincare symmetry as an inner symmetry of field theories defined on a fixed Minkowski spacetime is given. Local P gauge transformations and the corresponding covariant derivative with P gauge fields are introduced. The renormalization properties of scalar, spinor and vector fields in P gauge field backgrounds are determined. A minimal gauge field dynamics consistent with the renormalization constraints is given.Comment: 36 pages, latex-fil
    • …
    corecore