1,927 research outputs found

    O⋆O^\star-algebras and quantum dynamics: some existence results

    Full text link
    We discuss the possibility of defining an algebraic dynamics within the settings of O⋆O^\star-algebras. Compared with our previous results on this subject, the main improvement here is that we are not assuming the existence of some hamiltonian for the {\em full} physical system. We will show that, under suitable conditions, the dynamics can still be defined via some limiting procedure starting from a given {\em regularized sequence}

    Note on the Relativistic Thermodynamics of Moving Bodies

    Full text link
    We employ a novel thermodynamical argument to show that, at the macroscopic level,there is no intrinsic law of temperature transformation under Lorentz boosts. This result extends the corresponding microstatistical one of earlier works to the purely macroscopic regime and signifies that the concept of temperature as an objective entity is restricted to the description of bodies in their rest frames. The argument on which this result is based is centred on the thermal transactions between a body that moves with uniform velocity relative to a certain inertial frame and a thermometer, designed to measure its temperature, that is held at rest in that frame.Comment: To be published in J. Phys. A. A few minor corrections have been made to the earlier version of this articl

    Variational approach to transport in quantum dots

    Full text link
    We have derived a variational principle that defines the nonequilibrium steady-state transport across a correlated impurity mimicking, e.g., a quantum dot coupled to biased leads. This variational principle has been specialized to a Gutzwiller's variational space, and applied to the study of the simple single-orbital Anderson impurity model at half filling, finding a good qualitative accord with the observed behavior in quantum dots for the expected regime of values of the bias. Beyond the purely theoretical interest in the formal definition of a variational principle in a nonequilibrium problem, the particular methods proposed have the important advantage to be simple and flexible enough to deal with more complicated systems and variational spaces.Comment: 15 pages, 4 figure

    Quantum macrostatistical picture of nonequilibrium steady states

    Full text link
    We employ a quantum macrostatistical treatment of irreversible processes to prove that, in nonequilibrium steady states, (a) the hydrodynamical observables execute a generalised Onsager-Machlup process and (b) the spatial correlations of these observables are generically of long range. The key assumptions behind these results are a nonequilibrium version of Onsager's regression hypothesis, together with certain hypotheses of chaoticity and local equilibrium for hydrodynamical fluctuations.Comment: TeX, 13 page

    Manufacturing time operators: covariance, selection criteria, and examples

    Full text link
    We provide the most general forms of covariant and normalized time operators and their probability densities, with applications to quantum clocks, the time of arrival, and Lyapunov quantum operators. Examples are discussed of the profusion of possible operators and their physical meaning. Criteria to define unique, optimal operators for specific cases are given

    KMS, etc

    Full text link
    A general form of the ``Wick rotation'', starting from imaginary-time Green functions of quantum-mechanical systems in thermal equilibrium at positive temperature, is established. Extending work of H. Araki, the role of the KMS condition and of an associated anti-unitary symmetry operation, the ``modular conjugation'', in constructing analytic continuations of Green functions from real- to imaginary times, and back, is clarified. The relationship between the KMS condition for the vacuum with respect to Lorentz boosts, on one hand, and the spin-statistics connection and the PCT theorem, on the other hand, in local, relativistic quantum field theory is recalled. General results on the reconstruction of local quantum theories in various non-trivial gravitational backgrounds from ``Euclidian amplitudes'' are presented. In particular, a general form of the KMS condition is proposed and applied, e.g., to the Unruh- and the Hawking effects. This paper is dedicated to Huzihiro Araki on the occasion of his seventieth birthday, with admiration, affection and best wishes.Comment: 56 pages, submitted to J. Math. Phy

    On the Question of Temperature Transformations under Lorentz and Galilei Boosts

    Full text link
    We provide a quantum statistical thermodynamical solution of the long standing problem of temperature transformations of uniformly moving bodies. Our treatment of this question is based on the well established quantum statistical result that the thermal equilibrium conditions demanded by both the Zeroth and Second Laws of Thermodynamics are precisely those of Kubo, Martin and Schwinger (KMS). We prove that, in both the special relativistic and nonrelativistic settings, a state of a body cannot satisfy these conditions for different inertial frames with non-zero relative velocity. Hence a body that serves as a thermal reservoir, in the sense of the Zeroth Law, in an inertial rest frame cannot do so in a laboratory frame relative to which it moves with non-zero uniform velocity. Consequently, there is no law of temperature transformation under either Lorentz or Galilei boosts, and so the concept of temperature stemming from the Zeroth Law is restricted to states of bodies in their rest frames.Comment: A few minor corrections have been made. The article will be published in J. Phys.

    Thermal behavior induced by vacuum polarization on causal horizons in comparison with the standard heat bath formalism

    Get PDF
    Modular theory of operator algebras and the associated KMS property are used to obtain a unified description for the thermal aspects of the standard heat bath situation and those caused by quantum vacuum fluctuations from localization. An algebraic variant of lightfront holography reveals that the vacuum polarization on wedge horizons is compressed into the lightray direction. Their absence in the transverse direction is the prerequisite to an area (generalized Bekenstein-) behavior of entropy-like measures which reveal the loss of purity of the vacuum due to restrictions to wedges and their horizons. Besides the well-known fact that localization-induced (generalized Hawking-) temperature is fixed by the geometric aspects, this area behavior (versus the standard volume dependence) constitutes the main difference between localization-caused and standard thermal behavior.Comment: 15 page Latex, dedicated to A. A. Belavin on the occasion of his 60th birthda

    Equilibrium states and their entropy densities in gauge-invariant C*-systems

    Full text link
    A gauge-invariant C*-system is obtained as the fixed point subalgebra of the infinite tensor product of full matrix algebras under the tensor product unitary action of a compact group. In the paper, thermodynamics is studied on such systems and the chemical potential theory developed by Araki, Haag, Kastler and Takesaki is used. As a generalization of quantum spin system, the equivalence of the KMS condition, the Gibbs condition and the variational principle is shown for translation-invariant states. The entropy density of extremal equilibrium states is also investigated in relation to macroscopic uniformity.Comment: 20 pages, revised in March 200
    • …
    corecore