15 research outputs found
Magnetospheric particle acceleration and X-ray emission of pulsars
The available data on isolated X-ray pulsars, their wind nebulae, and the
supernova remnants which are connected to some of these sources are analyzed.
It is shown that electric fields of neutron stars tear off charged particles
from the surface of neutron star and trigger the acceleration of particles. The
charged particles are accelerated mainly in the field of magneto-dipole
radiation wave. Power and energy spectra of the charged particles depend on the
strength of the magneto-dipole radiation. Therefore, the X-ray radiation is
strongly dependent on the rate of rotational energy loss and weakly dependent
on the electric field intensity. Coulomb interaction between the charged
particles is the main factor for the energy loss and the X-ray spectra of the
charged particles.Comment: minor correction on table format, 20 pages (4 figures, 1 table),
submitted to International Journal of Modern Physics
Effects of the background radiation on radio pulsar and supernova remnant searches and the birth rates of these objects
In different directions of the Galaxy the Galactic background radio radiation
and radiation of complex star formation regions which include large number of
OB associations have different influences on radio pulsar (PSR) and supernova
remnant (SNR) searches. In this work we analyse the effects of these background
radiations on the observations of PSRs at 1400 MHz and SNRs at 1000 MHz. In the
interval l=0 the PSRs with flux F0.2 mJy and the SNRs
with surface brightness WmHzsr are
observable for all values of l and b. All the SNRs with
WmHzsr can be observed in the
interval 60l. We have examined samples of PSRs and SNRs to
estimate the birth rates of these objects in the region up to 3.2 kpc from the
Sun and also in the Galaxy. The birth rate of PSRs is about one in 200 years
and the birth rate of SNRs is about one in 65 years in our galaxy.Comment: revised versio
Influences of neutron star parameters on evolutions of different types of pulsar; evolutions of anomalous X-ray pulsars, soft gamma repeaters and dim isolated thermal neutron stars on the P-\.{P} diagram
Influences of the mass, moment of inertia, rotation, absence of stability in
the atmosphere and some other parameters of neutron stars on the evolution of
pulsars are examined. It is shown that the locations and evolutions of soft
gamma repeaters, anomalous X-ray pulsars and other types of pulsar on the
period versus period derivative diagram can be explained adopting values of
B G for these objects. This approach gives the possibility to explain
many properties of different types of pulsar.Comment: 18 pages, 1 figur