2 research outputs found

    Effects of continuous positive airway pressure on comprehensive geriatric assessment and cognitive function in elderly patients with obstructive sleep apnea syndrome

    Get PDF
    Obstructive sleep apnea syndrome (OSAS) can lead to cognitive impairment and depression affecting memory, attention, and executive functions. Continuous positive airway pressure (CPAP) treatment seems to be able to revert changes in brain networks and neuropsychological tests correlated to OSAS. The aim of the present study was to evaluate the effects of a 6-month treatment with CPAP on functional, humoral and cognitive parameters in a cohort of elderly OSAS patients with several comorbidities. We enrolled 360 elderly patients suffering from moderate to severe OSAS and indication for nocturnal CPAP. At baseline the Comprehensive Geriatric Assessment (CGA) revealed a borderline Mini-Mental State Examination (MMSE) score that improved after 6-month treatment with CPAP (25.3 +/- 1.6 vs 26 +/- 1.5; p < 0.0001), as well as the Montreal Cognitive Assessment (MoCA) showed a mild improvement (24.4 +/- 2.3 vs 26.2 +/- 1.7; p < 0.0001). Moreover, functionality activities increased after treatment, as documented by a short physical performance battery (SPPB) (6.3 +/- 1.5 vs 6.9 +/- 1.4; p < 0.0001). Reduction of the Geriatric Depression Scale (GDS) from 6.0 +/- 2.5 to 4.6 +/- 2.2 (p < 0.0001) was also detected. Changes of homeostasis model assessment (HOMA) index, oxygen desaturation index (ODI), sleep-time spent with saturation below 90% (TC90), peripheral arterial oxyhaemoglobin saturation (SpO(2)), apnea-hypopnea index (AHI) and estimation of glomerular filtration rate (eGFR), contributed, respectively, to 27.9%, 9.0%, 2.8%, 2.3%, 1.7% and 0.9% of MMSE variability for a total of 44.6% of MMSE variations. GDS score changes were due to the improvement of AHI, ODI and TC90, respectively, for 19.2%, 4.9%, 4.2% of the GDS variability, cumulative responsible for 28.3% of GDS modifications. The present real-world study shows that CPAP treatment is able to improve cognition and depressive symptoms in OSAS elderly patients

    Role of vitamin D in cardiovascular diseases

    No full text
    Vitamin D represents a group of secosteroids involved in the calcium and phosphate metabolism. The active form of vitamin D, 1,25-dihydroxylcalciferol, exerts its biological mechanisms via the VDR (vitamin D receptor) which acts as a regulator of several target genes. Hypovitaminosis D is associated with many diseases, which are not only limited to the metabolism of the skeleton, but growing evidence links the deficit of vitamin D to cardiovascular, metabolic, immune, and neoplastic diseases. In regard to the cardiovascular system, current evidence shows the presence of VDR in endothelial cells. Moreover, both in vitro and animal experimental models demonstrated that the deficit of vitamin D can promote endothelial dysfunction and atherosclerosis development. Vitamin D can interfere with vascular functions also by affecting the production of vasodilator mediators. VDR is also expressed in left ventricle cardiomyocytes, and hypovitaminosis D can relate to cardiac hypertrophy and heart failure. Randomized clinical trials (RCT) designed to prove the therapeutic role of vitamin D supplementation have been inconclusive to date. The aim of this review is to highlight the main interactions between vitamin D metabolism and cardiovascular diseases; thus, focusing on pathogenic mechanisms and related clinical manifestations
    corecore