7 research outputs found
Leading-logarithmic approximation by one-loop renormalization group within Matsubara formalism
We demonstrate how to devise a Matsubara-formalism based one-loop
approximation to the flow of the functional renormalization group (FRG) that
reproduces identically the leading-logarithmic parquet approximation. This
construction of a controlled fermionic FRG approximation in a regime not
accessible by perturbation theory generalizes a previous study from the
real-time zero-temperature formalism to the Matsubara formalism and thus to the
de facto standard framework used for condensed-matter FRG studies. Our
investigation is based on a simple model for the absorption of x-rays in
metals. It is a core part of our construction to exploit that in a suitable
leading-logarithmic approximation the values of the particle-hole
susceptibility on the real and on the imaginary frequency axis are identical.Comment: 20 pages, 7 figure
Nonequilibrium functional renormalization group for interacting quantum systems
We propose a nonequilibrium version of functional renormalization within the
Keldysh formalism by introducing a complex valued flow parameter in the Fermi
or Bose functions of each reservoir. Our cutoff scheme provides a unified
approach to equilibrium and nonequilibrium situations. We apply it to
nonequilibrium transport through an interacting quantum wire coupled to two
reservoirs and show that the nonequilibrium occupation induces new power law
exponents for the conductance.Comment: 5 pages, 2 figures; published versio
Temperature induced phase averaging in one-dimensional mesoscopic systems
We analyse phase averaging in one-dimensional interacting mesoscopic systems
with several barriers and show that for incommensurate positions an independent
average over several phases can be induced by finite temperature. For three
strong barriers with conductances G_i and mutual distances larger than the
thermal length, we obtain G ~ sqrt{G_1 G_2 G_3} for the total conductance G.
For an interacting wire, this implies power laws in G(T) with novel exponents,
which we propose as an experimental fingerprint to distinguish temperature
induced phase averaging from dephasing.Comment: 6 pages, 5 figures; added one figure; slightly extende
Nonequilibrium functional RG with frequency dependent vertex function: A study of the single impurity Anderson model
We investigate nonequilibrium properties of the single impurity Anderson
model by means of the functional renormalization group (fRG) within Keldysh
formalism. We present how the level broadening Gamma/2 can be used as flow
parameter for the fRG. This choice preserves important aspects of the Fermi
liquid behaviour that the model exhibits in case of particle-hole symmetry. An
approximation scheme for the Keldysh fRG is developed which accounts for the
frequency dependence of the two-particle vertex in a way similar but not
equivalent to a recently published approximation to the equilibrium Matsubara
fRG. Our method turns out to be a flexible tool for the study of weak to
intermediate on-site interactions U <= 3 Gamma. In equilibrium we find
excellent agreement with NRG results for the linear conductance at finite gate
voltage, magnetic field, and temperature. In nonequilibrium, our results for
the current agree well with TD-DMRG. For the nonlinear conductance as function
of the bias voltage, we propose reliable results at finite magnetic field and
finite temperature. Furthermore, we demonstrate the exponentially small scale
of the Kondo temperature to appear in the second order derivative of the
self-energy. We show that the approximation is, however, not able to reproduce
the scaling of the effective mass at large interactions.Comment: [v2] - minor changes throughout the text; added new Fig. 3; corrected
pert.-theory data in Figs. 10, 11; published versio