271 research outputs found

    Molecular oncology in genetic labs

    Get PDF

    Влияние неоднородностей температуры поверхности на теплообмен воздуха с Землей

    Get PDF
    В работе проведено моделирование процесса натекания воздуха с холодной поверхности воды на теплую поверхность суши и сравнение расчетов с результатами измерений. Из расчетов следует, что потоки тепла в прибрежной зоне могут более чем на 20% превышать значения потоков тепла, вычисленных из предположения о горизонтальной однородности приземного слоя. Таким образом, горизонтальную неоднородность атмосферы следует учитывать при расчетах охлаждения водоемов, горизонтальный размер которых имеет масштаб ~100 м.В роботі проведено моделювання процесу натікання повітря з холодної поверхні води на теплу поверхню суші та порівняння розрахунків із вимірюваннями. З розрахунків видно, що потоки тепла в прибережній зоні можуть більш ніж на 20% перевищувати значення потоків тепла, обчислених з припущення про горизонтальну однорідність приземного шару. Таким чином, горизонтальну неоднорідність атмосфери слід враховувати при розрахунках охолодження водойм, горизонтальний розмір яких має масштаб ~100 м.In the paper, the air flow process from the cold water surface onto the warm land surface was simulated. The comparisons of calculations with measurements were performed as well. The calculations show that the heat flux in the narrow coastal zone may be more than 20% higher than the values of heat fluxes calculated from the assumption of horizontal homogeneity of the surface layer. Thus, the horizontal inhomogeneity of the atmosphere must be taken into account in the calculation of the cooling water, the horizontal size of which has a scale of ~100 m

    Severe PATCHED1 deficiency in cancer-prone Gorlin patient cells results in intrinsic radiosensitivity

    Get PDF
    PURPOSE: Gorlin syndrome (or basal-cell nevus syndrome) is a cancer-prone genetic disease in which hypersusceptibility to secondary cancer and tissue reaction after radiation therapy is debated, as is increased radiosensitivity at cellular level. Gorlin syndrome results from heterozygous mutations in the PTCH1 gene for 60% of patients, and we therefore aimed to highlight correlations between intrinsic radiosensitivity and PTCH1 gene expression in fibroblasts from adult patients with Gorlin syndrome. METHODS AND MATERIALS: The radiosensitivity of fibroblasts from 6 patients with Gorlin syndrome was determined by cell-survival assay after high (0.5-3.5 Gy) and low (50-250 mGy) γ-ray doses. PTCH1 and DNA damage response gene expression was characterized by real-time polymerase chain reaction and Western blotting. DNA damage and repair were investigated by γH2AX and 53BP1 foci assay. PTCH1 knockdown was performed in cells from healthy donors by using stable RNA interference. Gorlin cells were genotyped by 2 complementary sequencing methods. RESULTS: Only cells from patients with Gorlin syndrome who presented severe deficiency in PATCHED1 protein exhibited a significant increase in cellular radiosensitivity, affecting cell responses to both high and low radiation doses. For 2 of the radiosensitive cell strains, heterozygous mutations in the 5' end of PTCH1 gene explain PATCHED1 protein deficiency. In all sensitive cells, DNA damage response pathways (ATM, CHK2, and P53 levels and activation by phosphorylation) were deregulated after irradiation, whereas DSB repair recognition was unimpaired. Furthermore, normal cells with RNA interference-mediated PTCH1 deficiency showed reduced survival after irradiation, directly linking this gene to high- and low-dose radiosensitivity. CONCLUSIONS: In the present study, we show an inverse correlation between PTCH1 expression level and cellular radiosensitivity, suggesting an explanation for the conflicting results previously reported for Gorlin syndrome and possibly providing a basis for prognostic screens for radiosensitive patients with Gorlin syndrome and PTCH1 mutations

    Rapid detection of SMARCB1 sequence variation using high resolution melting

    Get PDF
    Background : Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Methods : Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5\u27 and 3\u27 UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results : The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions : This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening

    Escherichia coli RNA polymerase-associated SWI/SNF protein RapA: evidence for RNA-directed binding and remodeling activity

    Get PDF
    Helicase-like SWI/SNF proteins are present in organisms belonging to distant kingdoms from bacteria to humans, indicating that they perform a very basic and ubiquitous form of nucleic acid management; current studies associate the activity of SWI/SNF proteins with remodeling of DNA and DNA–protein complexes. The bacterial SWI/SNF homolog RapA—an integral part of the Escherichia coli RNA polymerase complex—has been implicated in remodeling post-termination DNA–RNA polymerase–RNA ternary complexes (PTC), however its explicit nucleic acid substrates and mechanism remain elusive. Our work presents evidence indicating that RNA is a key substrate of RapA. Specifically, the formation of stable RapA–RNA intermediates in transcription and other, independent lines of evidence presented herein indicate that RapA binds and remodels RNA during transcription. Our results are consistent with RapA promoting RNA release from DNA–RNA polymerase–RNA ternary complexes; this process may be accompanied by the destabilization of non-canonical DNA–RNA complexes (putative DNA–RNA triplexes). Taken together, our data indicate a novel RNA remodeling activity for RapA, a representative of the SWI/SNF protein superfamily

    Review of the literature examining the correlation among DNA microarray technologies

    Get PDF
    DNA microarray technologies are used in a variety of biological disciplines. The diversity of platforms and analytical methods employed has raised concerns over the reliability, reproducibility and correlation of data produced across the different approaches. Initial investigations (years 2000–2003) found discrepancies in the gene expression measures produced by different microarray technologies. Increasing knowledge and control of the factors that result in poor correlation among the technologies has led to much higher levels of correlation among more recent publications (years 2004 to present). Here, we review the studies examining the correlation among microarray technologies. We find that with improvements in the technology (optimization and standardization of methods, including data analysis) and annotation, analysis across platforms yields highly correlated and reproducible results. We suggest several key factors that should be controlled in comparing across technologies, and are good microarray practice in general. Environ. Mol. Mutagen. 48:380–394, 2007. © 2007 Wiley-Liss, Inc

    Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis.

    Get PDF
    Human neural stem cell cultures provide progenitor cells that are potential cells of origin for brain cancers. However, the extent to which genetic predisposition to tumor formation can be faithfully captured in stem cell lines is uncertain. Here, we evaluated neuroepithelial stem (NES) cells, representative of cerebellar progenitors. We transduced NES cells with MYCN, observing medulloblastoma upon orthotopic implantation in mice. Significantly, transcriptomes and patterns of DNA methylation from xenograft tumors were globally more representative of human medulloblastoma compared to a MYCN-driven genetically engineered mouse model. Orthotopic transplantation of NES cells generated from Gorlin syndrome patients, who are predisposed to medulloblastoma due to germline-mutated PTCH1, also generated medulloblastoma. We engineered candidate cooperating mutations in Gorlin NES cells, with mutation of DDX3X or loss of GSE1 both accelerating tumorigenesis. These findings demonstrate that human NES cells provide a potent experimental resource for dissecting genetic causation in medulloblastoma
    corecore