21 research outputs found

    Intravesical Bladder Treatment and Deep Learning Applications to Improve Irritative Voiding Symptoms Caused by Interstitial Cystitis: A Literature Review

    Get PDF
    Our comprehension of interstitial cystitis/painful bladder syndrome (IC/PBS) has evolved over time. The term painful bladder syndrome, preferred by the International Continence Society, is characterized as “a syndrome marked by suprapubic pain during bladder filling, alongside increased daytime and nighttime frequency, in the absence of any proven urinary infection or other pathology.” The diagnosis of IC/PBS primarily relies on symptoms of urgency/frequency and bladder/pelvic pain. The exact pathogenesis of IC/PBS remains a mystery, but it is postulated to be multifactorial. Theories range from bladder urothelial abnormalities, mast cell degranulation in the bladder, bladder inflammation, to altered bladder innervation. Therapeutic strategies encompass patient education, dietary and lifestyle modifications, medication, intravesical therapy, and surgical intervention. This article delves into the diagnosis, treatment, and prognosis prediction of IC/PBS, presenting the latest research findings, artificial intelligence technology applications in diagnosing major diseases in IC/PBS, and emerging treatment alternatives

    The Current State of Artificial Intelligence Application in Urology

    Get PDF
    Artificial intelligence (AI) is being used in many areas of healthcare, including disease diagnosis and personalized treatment and rehabilitation management. Medical AI research and development has primarily focused on diagnosis, prediction, treatment, and management as an aid to patient care. AI is being utilized primarily in the areas of personal healthcare and diagnostic imaging. In the field of urology, significant investments are being made in the development of urination monitoring systems in the field of personal healthcare and ureteral stricture and urinary stone diagnosis solutions in the field of diagnostic imaging. In addition, AI technology is also being applied in the field of neurogenic bladder to develop risk monitoring systems based on video and audio data. This paper examines the application of AI to urological diseases and discusses the current trends and future prospects of AI research

    Universal coverage of comprehensive school-based tobacco control programs to reduce youth smoking in Seoul, Korea

    No full text
    Background This study aims to examine the effects of comprehensive school-based tobacco control programs universally provided in schools of Seoul City, Korea. Methods To investigate the current status of school-based tobacco control programs, data were acquired from The Seoul Metropolitan Office of Education. To assess the capacity to implement tobacco control programs, the “Five-P's” matrix was used. The matrix consists of 5 domains: Policies, Program, People, Provision of funds, and Partnerships. To measure smoking behavior changes, we analyzed data from the 2015-2016 Korea Youth Risk Behavior Web-based Survey of adolescents (aged 12-18 years) in Seoul. Measures included smoking prevalence, age at smoking initiation, and proportion of quit attempts. Results Since 1999, Korean government has promoted school-based tobacco control programs. Less than 10% of schools had offered the programs until 2014. With the increase of tobacco tax in 2015, 100% schools started to provide comprehensive tobacco control programs including tobacco-free policies, anti-tobacco education and activities. Each school designated at least one teacher in charge. In 2016, a total of 3.9 million USD was invested in Seoul, with more than 70% of the funds allocated to a total of 1,300 schools, covering 976,000 students. Partnerships to enforce programs were also developed with community health centers. The prevalence of smoking among adolescents in Seoul was 7.0% in 2015 and 5.8% in 2016, a 17% reduction in one year. Smoking initiation age increased slightly from 12.7 to 12.9 years. Proportion of quit attempts continued to be as high as 73.5% in 2015 and 2016. Conclusions Universal coverage of school-based tobacco control programs appears to result in a significant reduction of youth smoking. Previously decreasing trend of smoking prevalence in Seoul adolescents has accelerated with the expansion of school-based tobacco control programs. The effectiveness of the programs needs to be monitored and continuously enhanced to achieve a tobacco-free generation

    Caviar Extract and Its Constituent DHA Inhibits UVB-Irradiated Skin Aging by Inducing Adiponectin Production

    No full text
    In this study, caviar (sturgeon eggs) was used to elucidate its roles in adiponectin production and skin anti-aging. Recently, caviar has been largely used not only as a nutritional food, but also in cosmetic products. In particular, it has been reported that docosahexaenoic acid (DHA), as one of the main phospholipid components of caviar extract, induces intracellular lipid accumulation and the expression of adiponectin in adipocytes. Although adipocytes are well known to be associated with the skin dermis by secreting various factors (e.g., adiponectin), the effects of caviar extract and DHA on the skin are not well studied. Here, we demonstrate the effects of caviar extract and DHA on adipocyte differentiation and adiponectin production, resulting in a preventive role in UV-irradiated skin aging. Caviar extract and DHA enhanced adipocyte differentiation and promoted the synthesis of transcription factors controlling adipocyte differentiation and adiponectin. In addition, the mRNA expression levels of matrix metalloproteinase-1 (MMP-1) were decreased in UVB-irradiated Hs68 fibroblasts that were cultured in conditioned medium from caviar extract or DHA-treated differentiated adipocytes. Taken together, these results indicate that caviar extract and DHA induce adipocyte differentiation and adiponectin production, thereby inhibiting UVB-induced premature skin aging via the suppression of MMP-1 production

    Recombinant lignin peroxidase with superior thermal stability and melanin decolorization efficiency in a typical human skin-mimicking environment

    No full text
    Recently, the desire for a safe and effective method for skin whitening has been growing in the cosmetics industry. Commonly used tyrosinase-inhibiting chemical reagents exhibit side effects. Thus, recent studies have focused on performing melanin decolorization with enzymes as an alternative due to the low toxicity of enzymes and their ability to decolorize melanin selectively. Herein, 10 different isozymes were expressed as recombinant lignin peroxidases (LiPs) from Phanerochaete chrysosporium (PcLiPs), and PcLiP isozyme 4 (PcLiP04) was selected due to its high stability and activity at pH 5.5 and 37 ??C, which is close to human skin conditions. In vitro melanin decolorization results indicated that PcLiP04 exhibited at least 2.9-fold higher efficiency than that of well-known lignin peroxidase (PcLiP01) in a typical human skin-mimicking environment. The interaction force between melanin films measured by a surface forces apparatus (SFA) revealed that the decolorization of melanin by PcLiP04 harbors a disrupted structure, possibly interrupting ??????? stacking and/or hydrogen bonds. In addition, a 3D reconstructed human pigmented epidermis skin model showed a decrease in melanin area to 59.8% using PcLiP04, which suggests that PcLiP04 exhibits a strong potential for skin whitening

    Lipid extract derived from newly isolated Rhodotorula toruloides LAB-07 for cosmetic applications

    No full text
    Rhodotorula toruloides is a non-conventional yeast with a natural carotenoid pathway. In particular, R. toruloides is an oleaginous yeast that can accumulate lipids in high content, thereby gaining interest as a promising industrial host. In this study, we isolated and taxonomically identified a new R. toruloides LAB-07 strain. De novo genome assembly using PacBio and Illumina hybrid platforms yielded 27 contigs with a 20.78 Mb genome size. Subsequent genome annotation analysis based on RNA-seq predicted 5296 protein-coding genes, including the fatty acid production pathway. We compared lipid production under different media; it was highest in the yeast extract salt medium with glycerol as a carbon source. Polyunsaturated α-linolenic acid was detected among the fatty acids, and docking phosphatidylcholine as a substrate to modeled Fad2, which annotated as Δ12-fatty acid desaturase showed bifunctional Δ12, 15-desaturation is structurally possible in that the distances between the diiron center and the carbon-carbon bond in which desaturation occurs were similar to those of structurally identified mouse stearoyl-CoA desaturase. Finally, the applicability of the extracted total lipid fraction of R. toruloides was investigated, demonstrating an increase in filaggrin expression and suppression of heat-induced MMP-1 expression when applied to keratinocytes, along with the additional antioxidant activity. This work presents a new R. toruloides LAB-07 strain with genomic and lipidomic data, which would help understand the physiology of R. toruloides. Also, the various skin-related effect of R. toruloides lipid extract indicates its potential usage as a promising cosmetic ingredient

    Spatiotemporal Protein Variations Based on VIIRS-Derived Regional Protein Algorithm in the Northern East China Sea

    No full text
    Over the past two decades, the environmental characteristics of the northern East China Sea (NECS) that make it a crucial spawning ground for commercially significant species have faced substantial impacts due to climate change. Protein (PRT) within phytoplankton, serving as a nitrogen-rich food for organisms of higher trophic levels, is a sensitive indicator to environmental shifts. This study aims to develop a regional PRT algorithm to characterize spatial and temporal variations in the NECS from 2012 to 2022. Employing switching chlorophyll-a and particulate organic nitrogen algorithms, the developed regional PRT algorithm demonstrates enhanced accuracy. Satellite-estimated PRT concentrations, utilizing data from the Visible Infrared Imaging Radiometer Suite (VIIRS), generally align with the 1:1 line when compared to in situ data. Seasonal patterns and spatial distributions of PRT in both the western and eastern parts of the NECS from 2012 to 2022 were discerned, revealing notable differences in the spatial distribution and major controlling factors between these two areas. In conclusion, the regional PRT algorithm significantly improves estimation precision, advancing our understanding of PRT dynamics in the NECS concerning PRT concentration and environmental changes. This research underscores the importance of tailored algorithms in elucidating the intricate relationships between environmental variables and PRT variations in the NECS

    Measurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter

    No full text
    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology
    corecore