639 research outputs found

    Evaluation of tensile properties using instrumented indentation technique for small scale testing

    Get PDF
    The Instrumented indentation technique (IIT) is a useful tool for estimating various mechanical properties such as tensile properties, fracture toughness, and residual stress by analyzing the load and depth curve. Unlike conventional test such as tensile test, CTOD, since IIT makes an indent with rigid indenter and measures load and depth continuously, it requires only a localized area and small area on the target material. IIT also has merits of simple specimen preparation and experimental procedure in terms of time and cost. Also, it can be applied to in-field structures nondestructively. In this study, we introduce a method for evaluating tensile properties, primary yield strength and tensile strength using representative stress-strain beneath the rigid spherical indenter through numerous investigations of instrumented indentation curves. Analytic models and procedures for estimating the mechanical characterization of materials using IIT are proposed. The representative stress-strain method directly correlates indentation stress and strain beneath indenter to true stress and strain of the tensile test by taking into account the plastic constraint effect. The experimental results from IIT were verified by comparing results from the uniaxial tensile test. In particular, the applications of IIT in small scale and localized area of materials are presented. Reference 1) D. Tabor: Hardness of metal, (first ed. Clarendon Press, New York, 1951) 2) W.C. Oliver and G.M. Pharr, J. Mater, Res, Vol. 7, (1992), p. 1564 3) S.-K. Kang, Y.-C. Kim, K.-H. Kim, J.-Y. Kim and D. Kwon, Int. J. Plast. 49, 1 (2013

    Electrically Evoked Auditory Brainstem Response Using Extracochlear Stimulation at Different Cochlear Sites: A Comparison With Intracochlear Stimulation

    Get PDF
    Objectives. The distribution and extent of excitable spiral ganglion neurons (SGNs) have been investigated using the electrically evoked auditory brainstem response (EABR) during preoperative and perioperative periods. In this study, we investigated the EABR with extracochlear stimulation (eEABR) as a preoperative test to estimate these factors. Methods. Sixteen male Sprague-Dawley rats were used in this study. Experiments were conducted in nine rats with normal hearing and seven rats that were partially deafened with ouabain treatment. Each experiment involved the following steps: extracochlear stimulating electrode placement at three different sites along the axis of the cochlea and eEABR recordings; cochleostomy and four-channel intracochlear array implantation, followed by EABR recordings with various electrode pair combinations; and after electrophysiological measurements, harvest of the cochleae for histopathological evaluation. The slope characteristics of the amplitude growth function measured from eEABR and EABR, frequency-specific auditory thresholds, and the density of SGNs were compared. Results. Similar trends were observed in slope changes on different sites of stimulation with both types of stimulation in normal-hearing animalsā€”specifically, a monotonically increasing slope with increasing distance between bipolar pairs. In addition, eEABR slopes showed significant correlations with EABR slopes when the expected cochlear regions of stimulation were similar in normal-hearing animals. In partially deaf animals, the auditory thresholds at several frequencies had a significant correlation with the eEABR slopes of each extracochlear electrode at the apical, middle, and basal cochlear positions. This indicated that increasing the regions of cochlear stimulation had a differential impact on eEABR slopes, depending on the neural conditions. Conclusion. Our results indicated that eEABR slopes showed significant spatial correlations with the functionality of the auditory nerve. Therefore, eEABR tests at various cochlear positions might be used for estimating the extent of excitable SGNs in cochlear implant candidates prior to implantation

    Multiphasic analysis of whole exome sequencing data identifies a novel mutation of ACTG1 in a nonsyndromic hearing loss family

    Get PDF
    BACKGROUND: The genetic heterogeneity of sensorineural hearing loss is a major hurdle to the efficient discovery of disease-causing genes. We designed a multiphasic analysis of copy number variation (CNV), linkage, and single nucleotide variation (SNV) of whole exome sequencing (WES) data for the efficient discovery of mutations causing nonsyndromic hearing loss (NSHL). RESULTS: From WES data, we identified five distinct CNV loci from a NSHL family, but they were not co-segregated among patients. Linkage analysis based on SNVs identified six candidate loci (logarithm of odds [LOD] >1.5). We selected 15 SNVs that co-segregated with NSHL in the family, which were located in six linkage candidate loci. Finally, the novel variant p.M305T in ACTG1 (DFNA20/26) was selected as a disease-causing variant. CONCLUSIONS: Here, we present a multiphasic CNV, linkage, and SNV analysis of WES data for the identification of a candidate mutation causing NSHL. Our stepwise, multiphasic approach enabled us to expedite the discovery of disease-causing variants from a large number of patient variants

    Case study on high-resolution monitoring network of groundwater heat pump system

    Get PDF
    With the increasing installation of shallow geothermal energy, the importance of thermal impact prediction also increases in the system design stage. In nature, it is general that heterogeneity exists and it can affect the groundwater flow as well as the transport along to the flow. When predicting heat transport under the groundwater heat pump (GWHP) operation, however, impacts of heterogeneity have rarely been considered. In this study, to detect the hydraulic and thermal feedback to the two months of GWHP operation, a dense monitoring network was constructed with 12 monitoring wells at Eumseong-gun, Republic of Korea. The temperature was monitored in high resolution via fiber-optic distributed temperature sensing. During the GWHP operation, a very dynamic flow condition was generated with the hydraulic gradient between 0.005 and 0.07. The maximum temperature change at the nearest monitoring well was 2 ?. Observed hydraulic and thermal responses showed spatially heterogeneous results. While the heterogeneous responses of hydraulic change were stronger near the geothermal wells, those of temperature change were higher near the center of the thermal plume

    Scar folding for the treatment of nostril stenosis after open rhinoplasty: a case report

    Get PDF
    A 25-year-old woman was referred for discomfort when breathing through her left nose. The patient had undergone augmentation rhinoplasty 5 years ago, after which hypertrophic scarring occurred in the left nostril. Several corticosteroid injections were administered as the first line of treatment, but with no symptom improvement. Therefore, we proceeded with surgical scar removal, with the use of a nasal conformer. However, scarring in the left nostril recurred. Accordingly, we proceeded with further surgical treatment using the scar folding technique. After scar folding, neither scarring nor nostril stenosis recurred during 1 year of postoperative follow-up. To summarize, herein, we report a case of hypertrophic scarring in the nostril that was successfully treated with the scar folding technique

    Improved Thermal Stability of Al-Si Alloy Coated Steel Sheet with Cr Thin Film Deposition

    Get PDF
    We investigated the effect of Cr thin film deposition on the thermal stability and corrosion resistance of hot-dip aluminized steel. A high-quality Cr thin film was deposited on the surface of the Al-9 wt. % Si-coated steel sheets by physical vapor deposition. When the Al-Si coated steel sheets were exposed to a high temperature of 500ā„ƒ, Fe from the steel substrate diffused into the Al-Si coating layer resulting in discoloration. However, the highly heat-resistant Cr thin film deposited on the Al-Si coating prevented diffusion and surface exposure of Fe, improving the heat and corrosion resistances of the Al-Si alloy coated steel sheet

    Open reduction of zygoma fractures with the extended transconjunctival approach and T-bar screw reduction

    Get PDF
    Background Zygomaticomaxillary complex (ZMC) fractures mostly occur in the form of tripod fractures. The surgical field is accessed using a combination of three classic approaches. However, the subciliary incision may have unfavorable aesthetic results. Herein, the authors report the advantages of the extended transconjunctival approach (ETA) combined with T-bar screw reduction in minimizing scarring and complications for the treatment of ZMC fractures. Methods A total of 26 patients underwent ZMC reduction through the ETA and intraoral approach. A skin incision measuring roughly 5 to 8 mm in length was placed following the lateral canthal skin crease. After releasing the inferior crus of the lateral canthal tendon for canthotomy, the medial periosteum of the lateral orbital rim was preserved for canthal reattachment. A limited subperiosteal dissection and partial relaxing incision of the orbicularis oculi were performed to expose the fracture line of the inferior orbital rim and zygomaticofrontal suture. Reduction was performed using a T-bar screw through the transconjunctivalincision and an elevator through the intraoral incision. Results The aesthetic and functional results were excellent. Successful reduction was achieved and the skin incision was less than 8 mm in 20 cases (76.9%). Only six patients had an additional skin incision (less than 5 mm) to achieve reduction. No cases of ectropion, entropion, or excessive scarring were noted. Conclusions The ETA using a T-bar screw is a useful method for maximizing aesthetic results in ZMC fractures, with the advantages of minimal scarring, faster recovery, and maintenance of pretarsal fullness

    Focal Bone Marrow Lesions: A Complication of Ultrasound Diathermy

    Get PDF
    Ultrasound diathermy is widely used for the treatment of musculoskeletal disorders and other soft tissue injuries. Its use as a therapeutic modality is believed to be safe, with very few reported complications. Here, we report two patients who developed focal bone marrow abnormalities after receiving ultrasound diathermy. Both patientsā€™ magnetic resonance (MR) evaluations revealed linear subchondral bone lesions of the superolateral humeral head similar to those in osteonecrosis. The patientsā€™ symptoms subsequently improved, and available follow-up MR evaluation revealed near complete resolution of bone lesions. These findings suggest that ultrasound diathermy, and its interaction with bone tissue through thermal mechanisms, can cause focal bone marrow abnormalities. Furthermore, the bone marrow abnormalities seem to be transient, resolving upon cessation of ultrasound diathermy, therefore osteonecrosis should be differentiated from this temporal lesion
    • ā€¦
    corecore