41 research outputs found

    Successful Management with Glue Injection of Arterial Rupture Seen during Embolization of an Arteriovenous Malformation Using a Flow-Directed Catheter: A Case Report

    Get PDF
    We present a case in which an arterial rupture occurring during embolization of an arteriovenous malformation of the left occipital lobe with a flow-directed microcatheter, was successfully sealed with a small amount of glue. We navigated a 1.8-Fr Magic catheter through the posterior cerebral artery, and during superselective test injection, extravasation was observed at the parieto-occipital branch. The catheter was not removed and the perforation site was successfully sealed with a small amount of glue injected through the same catheter. Prompt recognition and closure of the perforation site is essential for good prognosis

    Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions

    Get PDF
    Highly active and durable bifunctional oxygen electrocatalysts have been of pivotal importance for renewable energy conversion and storage devices, such as unitized regenerative fuel cells and metal-air batteries. Perovskite-based oxygen electrocatalysts have emerged as promising nonprecious metal bifunctional electrocatalysts, yet their catalytic activity and stability still remain to be improved. We report a high-performance oxygen electrocatalyst based on a triple perovskite, Nd1.5Ba1.5CoFeMnO9-delta (NBCFM), which shows superior activity and durability for oxygen electrode reactions to single and double perovskites. When hybridized with nitrogen-doped reduced graphene oxide (N-rGO), the resulting NBCFM/N-rGO catalyst shows further boosted bifunctional oxygen electrode activity (0.698 V), which surpasses that of Pt/C (0.801 V) and Ir/C (0.769 V) catalysts and which, among the perovskite-based electrocatalysts, is the best activity reported to date. The superior catalytic performances of NBCFM could be correlated to its oxygen defect rich structure, lower charge transfer resistance, and smaller hybridization strength between O 2p and Co 3d orbitals

    Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant

    Get PDF
    Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of beta -amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families

    Nuclear translocation of STAT3 by in vitro metreleptin administration causes lipolysis in human primary adipocytes

    No full text
    We utilized subcutaneous (SC)- and omental (OM)-derived human primary adipocytes (hPA) from obese male, and investigated whether synthetic analog of leptin, metreleptin, may regulate lipolysis via translocation of STAT3 to the nucleus. We observed that 50 ng/mL of metreleptin increases STAT3 phosphorylation in both SC- and OM-derived hPA. Importantly, we found for the first time that metreleptin is capable of trans-locating STAT3 to the nucleus and STAT3 blockade inhibits metreleptin-induced lipolysis. Our initial data provide novel insights into the role of STAT3 as probable mediator of the action of metreleptin in regulating metabolism

    Revisiting surface chemistry in TiO2: A critical role of ionic passivation for pH-independent and anti-corrosive photoelectrochemical water oxidation

    No full text
    TiO2 photoanodes suffer from low catalytic activity and poor stability under acidic media for water oxidation. Here, we report pH-independent high-efficiency photoelectrochemical (PEC) water oxidation and prolonged stability via simple ionic passivation of rutile TiO2 (rTiO(2)) surface. The controlled surface passivation by hydroxide ions (OH -) onto the rTiO(2) surface (OH-rTiO(2)) enables extraordinarily high PEC performance and longterm durability independent of the pH value of electrolyte. The OH-rTiO(2) photoanode shows a charge transfer efficiency of similar to 100% at 1.23 V vs RHE over the entire pH range (pH 0 similar to pH 14) without incorporation of any cocatalysts, hole scavengers or overlayer, which implies that the molecular surface passivation by hydroxide ions successfully promotes the water oxidation reaction pathway. According to our density functional theory (DFT) calculations, the OH-rTiO(2) surface can possess increased hydroxide ion coverage, faster decay of the positive surface charge in acidic environments, and weakened H+ adsorption for pH > 7, which enable enhanced water oxidation performance independent of the pH value of the electrolyte. Thus, our report proves that the ionic passivation by hydroxide ions can affect PEC performances and durability of photoanode materials for pH-universal photoelectrochemical water oxidation

    Super recovery of the Hadley Cell edge to the CO2 removal

    No full text
    <p>The poleward shift of the Hadley cell (HC) edge by global warming is widely documented. However, its reversibility to CO<sub>2</sub> removal remains unknown. By conducting a climate model experiment where CO<sub>2</sub> concentration is systematically increased and then decreased in time, this study shows that a poleward-shifted HC edge in warm climate returns equatorward as CO<sub>2</sub> concentration decreases. It is also shown that the rate significantly differs between the two hemispheres. While the southern HC edge monotonically changes with CO<sub>2</sub> concentration, the northern HC edge exhibits a super recovery, locating on the equatorward side of the present-climate HC edge when CO<sub>2</sub> concentration returns to the present level. Such a super recovery is associated with the hysteresis of the North Atlantic sea surface temperature. Our findings suggest that the HC edge change may result in the super recovery of subtropical dryness in the northern hemisphere except California.</p>1
    corecore