349 research outputs found

    Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes

    Get PDF
    Many theories of neural networks assume rules of connection between pairs of neurons that are based on their cell types or functional properties. It is finally becoming feasible to test such pairwise models of connectivity, due to emerging advances in neuroanatomical techniques. One method will be to measure the functional properties of connected pairs of neurons, sparsely sampling pairs from many specimens. Another method will be to find a “connectome,” a dense map of all connections in a single specimen, and infer functional properties of neurons through computational analysis. For the latter method, the most exciting prospect would be to decode the memories that are hypothesized to be stored in connectomes

    Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Detection

    Full text link
    Efforts to automate the reconstruction of neural circuits from 3D electron microscopic (EM) brain images are critical for the field of connectomics. An important computation for reconstruction is the detection of neuronal boundaries. Images acquired by serial section EM, a leading 3D EM technique, are highly anisotropic, with inferior quality along the third dimension. For such images, the 2D max-pooling convolutional network has set the standard for performance at boundary detection. Here we achieve a substantial gain in accuracy through three innovations. Following the trend towards deeper networks for object recognition, we use a much deeper network than previously employed for boundary detection. Second, we incorporate 3D as well as 2D filters, to enable computations that use 3D context. Finally, we adopt a recursively trained architecture in which a first network generates a preliminary boundary map that is provided as input along with the original image to a second network that generates a final boundary map. Backpropagation training is accelerated by ZNN, a new implementation of 3D convolutional networks that uses multicore CPU parallelism for speed. Our hybrid 2D-3D architecture could be more generally applicable to other types of anisotropic 3D images, including video, and our recursive framework for any image labeling problem
    corecore