39 research outputs found

    What Do You Think of Fair Trade? Focusing on Young Korean Consumers in an Emerging Fair Trade Market

    Get PDF
    The purpose of this study was to explore public expectations regarding the concept of fair trade, focusing on higher education student consumers in South Korea and using a qualitative approach

    Vitrification for cryopreservation of 2D and 3D stem cells culture using high concentration of cryoprotective agents

    Get PDF
    Abstract Background Vitrification is the most promising technology for successful cryopreservation of living organisms without ice crystal formation. However, high concentrations (up to ~ā€‰6ā€“8ā€‰M) of cryoprotective agents (CPAs) used in stem cell induce osmotic and metabolic injuries. Moreover, the application of conventional slow-freezing methods to cultures of 3-D organoids of stem cells in various studies, is limited by their size. Results In this study, we evaluated the effect of high concentrations of CPAs including cytotoxicity and characterized human mesenchymal stem cell (MSC) at single cell level. The cell viability, cellular damage, and apoptotic mechanisms as well as the proliferation capacity and multipotency of cells subjected to vitrification were similar to those in the slow-freezing group. Furthermore, we identified the possibility of vitrification of size-controlled 3-D spheroids for cryopreservation of organoid with high survivability. Conclusions Our results demonstrate successful vitrification of both single cell and spheroid using high concentration of CPAs in vitro without cytotoxicity

    Neuroprotective Effects of Cuscutae Semen in a Mouse Model of Parkinsonā€™s Disease

    Get PDF
    Parkinsonā€™s disease (PD) is a neurodegenerative movement disorder that is characterized by the progressive degeneration of the dopaminergic (DA) pathway. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes damage to the DA neurons, and 1-4-methyl-4-phenylpyridinium (MPP+) causes cell death in differentiated PC12 cells that is similar to the degeneration that occurs in PD. Moreover, MPTP treatment increases the activity of the brainā€™s immune cells, reactive oxygen species- (ROS-) generating processes, and glutathione peroxidase. We recently reported that Cuscutae Semen (CS), a widely used traditional herbal medicine, increases cell viability in a yeast model of PD. In the present study, we examined the inhibitory effect of CS on the neurotoxicity of MPTP in mice and on the MPP+-induced cell death in differentiated PC12 cells. The MPTP-induced loss of nigral DA neurons was partly inhibited by CS-mediated decreases in ROS generation. The activation of microglia was slightly inhibited by CS, although this effect did not reach statistical significance. Furthermore, CS may reduce the MPP+ toxicity in PC12 cells by suppressing glutathione peroxidase activation. These results suggest that CS may be beneficial for the treatment of neurodegenerative diseases such as PD

    Spheroid-Induced Epithelial-Mesenchymal Transition Provokes Global Alterations of Breast Cancer Lipidome: A Multi-Layered Omics Analysis

    Get PDF
    Metabolic rewiring has been recognized as an important feature to the progression of cancer. However, the essential components and functions of lipid metabolic networks in breast cancer progression are not fully understood. In this study, we investigated the roles of altered lipid metabolism in the malignant phenotype of breast cancer. Using a spheroid-induced epithelial-mesenchymal transition (EMT) model, we conducted multi-layered lipidomic and transcriptomic analysis to comprehensively describe the rewiring of the breast cancer lipidome during the malignant transformation. A tremendous homeostatic disturbance of various complex lipid species including ceramide, sphingomyelin, ether-linked phosphatidylcholines, and ether-linked phosphatidylethanolamine was found in the mesenchymal state of cancer cells. Noticeably, polyunsaturated fatty acids composition in spheroid cells was significantly decreased, accordingly with the gene expression patterns observed in the transcriptomic analysis of associated regulators. For instance, the up-regulation of SCD, ACOX3, and FADS1 and the down-regulation of PTPLB, PECR, and ELOVL2 were found among other lipid metabolic regulators. Significantly, the ratio of C22:6n3 (docosahexaenoic acid, DHA) to C22:5n3 was dramatically reduced in spheroid cells analogously to the down-regulation of ELOVL2. Following mechanistic study confirmed the up-regulation of SCD and down-regulation of PTPLB, PECR, ELOVL2, and ELOVL3 in the spheroid cells. Furthermore, the depletion of ELOVL2 induced metastatic characteristics in breast cancer cells via the SREBPs axis. A subsequent large-scale analysis using 51 breast cancer cell lines demonstrated the reduced expression of ELOVL2 in basal-like phenotypes. Breast cancer patients with low ELOVL2 expression exhibited poor prognoses (HR = 0.76, CI = 0.67ā€“0.86). Collectively, ELOVL2 expression is associated with the malignant phenotypes and appear to be a novel prognostic biomarker in breast cancer. In conclusion, the present study demonstrates that there is a global alteration of the lipid composition during EMT and suggests the down-regulation of ELOVL2 induces lipid metabolism reprogramming in breast cancer and contributes to their malignant phenotypes

    A Two-Step Approach to Solar Power Generation Prediction Based on Weather Data Using Machine Learning

    No full text
    Photovoltaic systems have become an important source of renewable energy generation. Because solar power generation is intrinsically highly dependent on weather fluctuations, predicting power generation using weather information has several economic benefits, including reliable operation planning and proactive power trading. This study builds a model that predicts the amounts of solar power generation using weather information provided by weather agencies. This study proposes a two-step modeling process that connects unannounced weather variables with announced weather forecasts. The empirical results show that this approach improves a base approach by wide margins, regardless of types of applied machine learning algorithms. The results also show that the random forest regression algorithm performs the best for this problem, achieving an R-squared value of 70.5% in the test data. The intermediate modeling process creates four variables, which are ranked with high importance in the post-analysis. The constructed model performs realistic one-day ahead predictions

    Sn-Substituted Argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl Solid Electrolyte for Improving Interfacial and Atmospheric Stability

    No full text
    Sulfide-based solid electrolytes exhibit good formability and superior ionic conductivity. However, these electrolytes can react with atmospheric moisture to generate H2S gas, resulting in performance degradation. In this study, we attempted to improve the stability of the interface between Li metal and an argyrodite Li6Ps5Cl solid electrolyte by partially substituting P with Sn to form an Snā€“S bond. The solid electrolyte was synthesized via liquid synthesis instead of the conventional mechanical milling method. X-ray diffraction analyses confirmed that solid electrolytes have an argyrodite structure and peak shift occurs as substitution increases. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses confirmed that the particle size gradually increased, and the components were evenly distributed. Moreover, electrochemical impedance spectroscopy and DC cycling confirmed that the ionic conductivity decreased slightly but that the cycling behavior was stable for about 500 h at X = 0.05. The amount of H2S gas generated when the solid electrolyte is exposed to moisture was measured using a gas sensor. Stability against atmospheric moisture was improved. In conclusion, liquid-phase synthesis could be applied for the large-scale production of argyrodite-based Li6PS5Cl solid electrolytes. Moreover, Sn substitution improved the electrochemical stability of the solid electrolyte

    What Do You Think of Fair Trade? Focusing on Young Korean Consumers in an Emerging Fair Trade Market

    No full text
    The purpose of this study was to explore public expectations regarding the concept of fair trade, focusing on higher education student consumers in South Korea and using a qualitative approach.</p

    Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis

    No full text
    Although endovascular stenting has been used as an interventional therapy to treat cardio- and cerebro-vascular diseases, it is associated with recurrent vascular diseases following stent thrombosis and in-stent restenosis. In this study, a metallic stent was coated with dopamine-conjugated hyaluronic acid with different ratios of catechol group to improve hemocompatibility and re-endothelialization. Especially, we were interested in how much amount of catechol group is appropriate for the above-mentioned purposes. Therefore, a series of dopamine-conjugated hyaluronic acid conjugates with different ratios of catechol group were synthesized via a carbodiimide coupling reaction. Dopamine-conjugated hyaluronic acid conjugates were characterized with 1 H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the amount of catechol group in dopamine-conjugated hyaluronic acid was measured by ultraviolet spectrometer. Co-Cr substrates were polished and coated with various dopamine-conjugated hyaluronic acid conjugates under pHā€‰8.5. Dopamine-conjugated hyaluronic acid amounts on the substrate were quantified by micro-bicinchoninic acid assay. Surface characteristics of dopamine-conjugated hyaluronic-acid-coated Co-Cr were evaluated by water contact angle, scanning electron microscopy, and atomic force microscopy. The hemocompatibility of the surface-modified substrates was assessed by protein adsorption and platelet adhesion tests. Adhesion and activation of platelets were confirmed with scanning electron microscopy and lactate dehydrogenase assay. Human umbilical vein endothelial cells were cultured on the substrates, and the viability, adhesion, and proliferation were investigated through cell counting kit-8 assay and fluorescent images. Obtained results demonstrated that optimal amounts of catechol group (100 Āµmol) in the dopamine-conjugated hyaluronic acid existed in terms of various properties such as hemocompatibility and cellular responses

    Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats

    No full text
    Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-Ī³ and CCAAT/enhancer-binding protein (C/EBP)-Ī±. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARĪ³ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo

    Effect of the Annealing Temperature of Lithiophilic Agā€“Cu Co-Deposition on the Cycling Performance of Li-Metal Anodes

    No full text
    Practical applications of Li-metal anodes are limited by dendrite formation, Li loss, and poor reaction, resulting in a low Coulombic efficiency. In this study, we investigated the effects of island-shaped Ag atoms on the electrochemical behavior of Li-metal anodes. A Agā€“Cu film was co-deposited through sputtering and subsequent annealing to anchor the Ag atoms with an island shape on a Cu substrate. The Ag target was co-sputtered with Cu with controlled atomic ratios in the Agā€“Cu alloy. The sputtering thickness was set to 100 nm, and various annealing conditions were applied. The embedded island-shaped Ag atoms provided effective nucleation sites for Li deposition during the electrochemical nucleation of Li, increasing the nucleation density and spatial uniformity while decreasing the nucleation size and potential. Compact dendrite-free high-density Li deposition was achieved by annealing the Agā€“Cu current collector (CC) at 600 Ā°C. Under repetitive Li plating and stripping for 110 cycles at a current density of 0.5 mAcmāˆ’2 and capacity of 1 mAhcmāˆ’2, a high Coulombic efficiency of 98.5% was achieved. Conversely, the bare Cu CC had a life of up to 67 cycles under the same test conditions
    corecore