17 research outputs found

    Clinical Study Effect of Omega-3 Fatty Acid on the Fatty Acid Content of the Erythrocyte Membrane and Proteinuria in Patients with Diabetic Nephropathy

    Get PDF
    Diabetic nephropathy is the leading cause of end-stage renal disease and is associated with an increased risk of cardiovascular events. Dietary omega-3 fatty acid (FA) has cardioprotective effect and is associated with a slower deterioration of albumin excretion in patients with diabetic nephropathy. In this study, we evaluated the effect of omega-3 FA on proteinuria in diabetic nephropathy patients who are controlling blood pressure (BP) with angiotensin converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB). In addition, we identified changes in erythrocyte membrane FA contents. A total of 19 patients who were treated with ACEi or ARB for at least 6 months were treated for 12 weeks with omega-3 FA (Omacor, 3 g/day) or a control treatment (olive oil, 3 g/day). Proteinuria levels were unchanged after 12 weeks compared with baseline values in both groups. The erythrocyte membrane contents of omega-3 FA and eicosapentaenoic acid (EPA) were significantly increased, and oleic acid, arachidonic acid : EPA ratio, and omega-6 : omega-3 FA ratio were significantly decreased after 12 weeks compared with the baseline values in the omega-3 FA group. Although omega-3 FA did not appear to alter proteinuria, erythrocyte membrane FA contents, including oleic acid, were altered by omega-3 FA supplementation

    Subchronic oral toxicity of silver nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems.</p> <p>Results</p> <p>This study tested the oral toxicity of silver nanoparticles (56 nm) over a period of 13 weeks (90 days) in F344 rats following Organization for Economic Cooperation and Development (OECD) test guideline 408 and Good Laboratory Practices (GLP). Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group): vehicle control, low-dose (30 mg/kg), middle-dose (125 mg/kg), and high-dose (500 mg/kg). After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P < 0.05) in the body weight of male rats after 4 weeks of exposure, although there were no significant changes in food or water consumption during the study period. Significant dose-dependent changes were found in alkaline phosphatase and cholesterol for the male and female rats, indicating that exposure to more than 125 mg/kg of silver nanoparticles may result in slight liver damage. Histopathologic examination revealed a higher incidence of bile-duct hyperplasia, with or without necrosis, fibrosis, and/or pigmentation, in treated animals. There was also a dose-dependent accumulation of silver in all tissues examined. A gender-related difference in the accumulation of silver was noted in the kidneys, with a twofold increase in female kidneys compared to male kidneys.</p> <p>Conclusions</p> <p>The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level) of 30 mg/kg and LOAEL (lowest observable adverse effect level) of 125 mg/kg are suggested from the present study.</p

    Subchronic inhalation toxicity of gold nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the <it>in vivo </it>toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME) of gold nanoparticles remain unclear.</p> <p>Results</p> <p>The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males) and 145 g (females), were divided into 4 groups (10 rats in each group): fresh-air control, low-dose (2.36 × 10<sup>4 </sup>particle/cm<sup>3</sup>, 0.04 μg/m<sup>3</sup>), middle-dose (2.36 × 10<sup>5 </sup>particle/cm<sup>3</sup>, 0.38 μg/m<sup>3</sup>), and high-dose (1.85 × 10<sup>6 </sup>particle/cm<sup>3</sup>, 20.02 μg/m<sup>3</sup>). The animals were exposed to gold nanoparticles (average diameter 4-5 nm) for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH), and total protein were also monitored in a cellular bronchoalveolar lavage (BAL) fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue distribution of gold nanoparticles showed a dose-dependent accumulation of gold in only lungs and kidneys with a gender-related difference in gold nanoparticles content in kidneys.</p> <p>Conclusions</p> <p>Lungs were the only organ in which there were dose-related changes in both male and female rats. Changes observed in lung histopathology and function in high-dose animals indicate that the highest concentration (20 μg/m<sup>3</sup>) is a LOAEL and the middle concentration (0.38 μg/m<sup>3</sup>) is a NOAEL for this study.</p

    Effect of Omega-3 Fatty Acid on the Fatty Acid Content of the Erythrocyte Membrane and Proteinuria in Patients with Diabetic Nephropathy

    No full text
    Diabetic nephropathy is the leading cause of end-stage renal disease and is associated with an increased risk of cardiovascular events. Dietary omega-3 fatty acid (FA) has cardioprotective effect and is associated with a slower deterioration of albumin excretion in patients with diabetic nephropathy. In this study, we evaluated the effect of omega-3 FA on proteinuria in diabetic nephropathy patients who are controlling blood pressure (BP) with angiotensin converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB). In addition, we identified changes in erythrocyte membrane FA contents. A total of 19 patients who were treated with ACEi or ARB for at least 6 months were treated for 12 weeks with omega-3 FA (Omacor, 3 g/day) or a control treatment (olive oil, 3 g/day). Proteinuria levels were unchanged after 12 weeks compared with baseline values in both groups. The erythrocyte membrane contents of omega-3 FA and eicosapentaenoic acid (EPA) were significantly increased, and oleic acid, arachidonic acid : EPA ratio, and omega-6 : omega-3 FA ratio were significantly decreased after 12 weeks compared with the baseline values in the omega-3 FA group. Although omega-3 FA did not appear to alter proteinuria, erythrocyte membrane FA contents, including oleic acid, were altered by omega-3 FA supplementation

    Pathobiological and Genomic Characterization of a Cold-Adapted Infectious Bronchitis Virus (BP-caKII)

    No full text
    We established a cold-adapted infectious bronchitis virus (BP-caKII) by passaging a field virus through specific pathogen-free embryonated eggs 20 times at 32 &#176;C. We characterized its growth kinetics and pathogenicity in embryonated eggs, and its tropism and persistence in different tissues from chickens; then, we evaluated pathogenicity by using a new premature reproductive tract pathogenicity model. Furthermore, we determined the complete genomic sequence of BP-caKII to understand the genetic changes related to cold adaptation. According to our results, BP-caKII clustered with the KII genotype viruses K2 and KM91, and showed less pathogenicity than K2, a live attenuated vaccine strain. BP-caKII showed delayed viremia, resulting in its delayed dissemination to the kidneys and cecal tonsils compared to K2 and KM91, the latter of which is a pathogenic field strain. A comparative genomics study revealed similar nucleotide sequences between BP-caKII, K2 and KM91 but clearly showed different mutations among them. BP-caKII shared several mutations with K2 (nsp13, 14, 15 and 16) following embryo adaptation but acquired multiple additional mutations in nonstructural proteins (nsp3, 4 and 12), spike proteins and nucleocapsid proteins following cold adaptation. Thus, the establishment of BP-caKII and the identified mutations in this study may provide insight into the genetic background of embryo and cold adaptations, and the attenuation of coronaviruses
    corecore