44 research outputs found

    Bioinformatics analysis identified CDC20 as a potential drug target for cholangiocarcinoma

    No full text
    Background Cholangiocarcinoma (CCA) is a malignancy that originates from bile duct cells. The incidence and mortality of CCA are very high especially in Southeast Asian countries. Moreover, most CCA patients have a very poor outcome. Presently, there are still no effective treatment regimens for CCA. The resistance to several standard chemotherapy drugs occurs frequently; thus, searching for a novel effective treatment for CCA is urgently needed. Methods In this study, comprehensive bioinformatics analyses for identification of novel target genes for CCA therapy based on three microarray gene expression profiles (GSE26566, GSE32225 and GSE76297) from the Gene Expression Omnibus (GEO) database were performed. Based on differentially expressed genes (DEGs), gene ontology and pathway enrichment analyses were performed. Protein-protein interactions (PPI) and hub gene identifications were analyzed using STRING and Cytoscape software. Then, the expression of candidate genes from bioinformatics analysis was measured in CCA cell lines using real time PCR. Finally, the anti-tumor activity of specific inhibitor against candidate genes were investigated in CCA cell lines cultured under 2-dimensional and 3-dimensional cell culture models. Results The three microarray datasets exhibited an intersection consisting of 226 DEGs (124 up-regulated and 102 down-regulated genes) in CCA. DEGs were significantly enriched in cell cycle, hemostasis and metabolism pathways according to Reactome pathway analysis. In addition, 20 potential hub genes in CCA were identified using the protein-protein interaction (PPI) network and sub-PPI network analysis. Subsequently, CDC20 was identified as a potential novel targeted drug for CCA based on a drug prioritizing program. In addition, the anti-tumor activity of a potential CDC20 inhibitor, namely dinaciclib, was investigated in CCA cell lines. Dinaciclib demonstrated huge anti-tumor activity better than gemcitabine, the standard chemotherapeutic drug for CCA. Conclusion Using integrated bioinformatics analysis, CDC20 was identified as a novel candidate therapeutic target for CCA

    Overexpression of lactate dehydrogenase A in cholangiocarcinoma is correlated with poor prognosis

    No full text
    Lactate dehydrogenase A (LDHA), a key metabolic enzyme, plays a crucial role in the final step of anaerobic glycolysis. Overexpression of LDHA is observed in many human malignancies in association with tumor progression. The purpose of this study was to investigate LDHA expression pattern during carcinogenesis, its clinico-pathological association, and evaluate the prognostic value of LDHA in CCA patients. LDHA expression was investigated using immunohistochemistry technique in both hamster- (n=60) and human-CCA tissues (n=82). Plasma LDH from healthy control (n=40) and CCA patients (n=29) were determined using an enzymatic based assay. The association of LDHA expression with clinicopathological findings and prognostic value were evaluated by statistical analysis. In the CCA hamster model, an increase of LDHA expression was associated with the progression of CCA-genesis. Higher LDHA overexpression was associated with shorter survival of CCA patients. Multivariate analysis indicated that LDHA expression including histological type were independent prognostic risk factor of patient’s survival. However, there was no difference in plasma LDH level between CCA patients and healthy controls. LDHA expression is involved in cholangio-carcinogenesis. Overexpression of LDHA can be a marker of poor prognosis in CCA patients and it might be a potential target for CCA treatment

    Kallikrein-11, in Association with Coiled-Coil Domain Containing 25, as a Potential Prognostic Marker for Cholangiocarcinoma with Lymph Node Metastasis

    No full text
    Cholangiocarcinoma (CCA) is a malignancy arising from cholangiocytes. Currently, the treatment and prognosis for CCA are mostly poor. Recently, we have reported that coiled-coil domain containing 25 (CCDC25) protein level in the sera may be a diagnostic marker for CCA. Subsequently, we identified three binding proteins of CCDC25 and found that kallikrein-11 (KLK11) expression was highest among those binding proteins. In this study, we investigated CCDC25 and KLK11 expression in CCA and adjacent normal tissues (n = 18) using immunohistochemistry. The results demonstrated that the expressions of CCDC25 and KLK11 in CCA tissues were both significantly higher than the adjacent tissues (p < 0.001 and p = 0.001, respectively). Then, using GEPIA bioinformatics analysis, KLK11 mRNA was significantly overexpressed in CCA tumor tissues compared with normal tissues (p < 0.05). Moreover, CCDC25 expression was positively correlated with KLK11 expression in CCA with lymph node metastasis (p = 0.028, r = 0.593). An analysis for the interaction of KLK11 with CCDC25 and other proteins, using STRING version 11.0, revealed that CCDC25 and KLK11 correlated with metastasis-related proteins. In addition, Kaplan-Meier survival curve analysis revealed that a high expression of KLK11 was associated with the poor prognosis of CCA. In conclusion, KLK11 is, as a binding protein for CCDC25, possibly involved in the metastatic process of CCA. KLK11 may be used as a prognostic marker for CCA

    Homophilic Interaction of CD147 Promotes IL-6-Mediated Cholangiocarcinoma Invasion via the NF-κB-Dependent Pathway

    No full text
    Cholangiocarcinoma (CCA), an aggressive cancer of bile ducts, is a well-known chronic inflammation-related disease. The major impediment in CCA treatment is limited treatment options for advanced disease; hence, an alternative is urgently required. The role of CD147 on cytokine production has been observed in inflammation-related diseases, but not in CCA. Therefore, this study was focused on CD147-promoting proinflammatory cytokine production and functions. Proinflammatory cytokine profiles were compared between CD147 expressing CCA cells and CD147 knockout cells (CD147 KO). Three cytokines, namely interleukin (IL)-6, IL-8, and granulocyte–monocyte colony-stimulating factor (GM-CSF), were dramatically diminished in CD147 KO clones. The involvement of the CD147-related cytokines in CCA invasion was established. CD147-promoted IL-6, IL-8, and GM-CSF secretions were regulated by NF-κB nuclear translocation, Akt activation, and p38 phosphorylation. CD147-fostering IL-6 production was dependent on soluble CD147, CD147 homophilic interaction, and NF-κB function. The overexpression of specific genes in CCA tissues compared to normal counterparts emphasized the clinical importance of these molecules. Altogether, CD147-potentiated proinflammatory cytokine production leading to CCA cell invasion is shown for the first time in the current study. This suggests that modulation of CD147-related inflammation might be a promising choice for advanced CCA treatment

    Aberrant expression of NF-κB in liver fluke associated cholangiocarcinoma: implications for targeted therapy.

    No full text
    BACKGROUND: Up-regulation and association of nuclear factor kappa B (NF-κB) with carcinogenesis and tumor progression has been reported in several malignancies. In the current study, expression of NF-κB in cholangiocarcinoma (CCA) patient tissues and its clinical significance were determined. The possibility of using NF-κB as the therapeutic target of CCA was demonstrated. METHODOLOGY: Expression of NF-κB in CCA patient tissues was determined using immunohistochemistry. Dehydroxymethylepoxyquinomicin (DHMEQ), a specific NF-κB inhibitor, was used to inhibit NF-κB action. Cell growth was determined using an MTT assay, and cell apoptosis was shown by DNA fragmentation, flow cytometry and immunocytofluorescent staining. Effects of DHMEQ on growth and apoptosis were demonstrated in CCA cell lines and CCA-inoculated mice. DHMEQ-induced apoptosis in patient tissues using a histoculture drug response assay was quantified by TUNEL assay. PRINCIPAL FINDINGS: Normal bile duct epithelia rarely expressed NF-κB (subunits p50, p52 and p65), whereas all CCA patient tissues (n  =  48) over-expressed all NF-κB subunits. Inhibiting NF-κB action by DHMEQ significantly inhibited growth of human CCA cell lines in a dose- and time-dependent manner. DHMEQ increased cell apoptosis by decreasing the anti-apoptotic protein expressions-Bcl-2, XIAP-and activating caspase pathway. DHMEQ effectively reduced tumor size in CCA-inoculated mice and induced cell apoptosis in primary histocultures of CCA patient tissues. CONCLUSIONS: NF-κB was over-expressed in CCA tissues. Inhibition of NF-κB action significantly reduced cell growth and enhanced cell apoptosis. This study highlights NF-κB as a molecular target for CCA therapy

    Anserine/Carnosine-Rich Extract from Thai Native Chicken Suppresses Melanogenesis via Activation of ERK Signaling Pathway

    No full text
    Skin hyperpigmentation is an aesthetic problem that leads to psychosocial issues. Thus, skin whitening agents from agro- and poultry-industrial co-products are considered high economic value ingredients of interest for sustainable application. Therefore, this study aimed to determine the cosmeceutical potential of anserine/carnosine-rich chicken extract (ACCE) from the Thai native chicken Pradu Hang Dam Mor Kor 55 (PD) meat. The chemical composition was identified and quantified using the HPLC-UV method. Then, the antioxidation potential of the extract was compared to that of L-anserine and L-carnosine, using 1,1-diphenyl-2-picrylhydrazyl assay and shikonin-induced production of reactive oxygen species in CCD-986Sk cell models, and the anti-melanogenesis effect in the MNT-1 melanoma cell line model was investigated. Furthermore, related mechanisms were identified using colorimetric tyrosinase assay and the Western blot technique. The ACCE was composed of L-anserine and L-carnosine as two major constituents. In a dose-dependent manner, ACCE, L-anserine, and L-carnosine manifested significant antioxidation potential and significant reduction of melanin production. Activation of the extracellular signal-regulated kinase (ERK) signaling pathway and inhibition of tyrosinase activity of ACCE were demonstrated as the mechanisms of the anti-melanogenesis effect. In conclusion, ACCE has been revealed as a potential cosmeceutical agent due to its antioxidation and anti-melanogenic activity in association with L-anserine and L-carnosine composition and biomolecular regulating ability. Therefore, further studies and development should be considered to support the utilization of anserine/carnosine-rich chicken extract in the cosmetic industry for economic value creation and sustainability
    corecore