3,511 research outputs found

    Numerical Analyses of Weakly Nonlinear Velocity-Density Coupling

    Get PDF
    We study evolution of various statistical quantities of smoothed cosmic density and velocity fields using N-body simulations. The parameter C≡/()C\equiv /( ) characterizes nonlinear coupling of these two fields and determines behavior of bulk velocity dispersion as a function of local density contrast. It is found that this parameter depends strongly on the smoothing scale even in quasi-linear regimes where the skewness parameter S3S_3 is nearly constant and close to the predicted value by the second-order perturbation theory. We also analyze weakly nonlinear effects caused by an adaptive smoothing known as the gather approach.Comment: 22 pages, 4 figures, to appear in ApJ (558, Sep 10

    Signature of the Overhauser field on the coherent spin dynamics of donor-bound electron in a single CdTe quantum well

    Full text link
    We have studied the coherent spin dynamics in an oblique magnetic field of electrons localized on donors and placed in the middle of a single CdTe quantum well, by using a time-resolved optical technique: the photo-induced Faraday rotation. We showed that this dynamics is affected by a weak Overhauser field created via the hyperfine interaction of optically spin-polarized donor-bound electrons with the surrounding nuclear isotopes carrying non-zero spins. We have measured this nuclear field, which is on the order of a few mT and can reach a maximum experimental value of 9.4 mT. This value represents 13 % of the maximal nuclear polarization, and corresponds also to 13 % of maximal electronic polarization.Comment: 15 pages, 4 figure

    Child pornography offenses are a valid diagnostic indicator of pedophilia.

    Full text link

    Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1-1 Hz

    Full text link
    In general relativity, a gravitational wave has two polarization modes (tensor mode), but it could have additional polarizations (scalar and vector modes) in the early stage of the universe, where the general relativity may not strictly hold and/or the effect of higher-dimensional gravity may become significant. In this paper, we discuss how to detect extra-polarization modes of stochastic gravitational wave background (GWB), and study the separability of each polarization using future space-based detectors such as BBO and DECIGO. We specifically consider two plausible setups of the spacecraft constellations consisting of two and four clusters, and estimate the sensitivity to each polarization mode of GWBs. We find that a separate detection of each polarization mode is rather sensitive to the geometric configuration and distance between clusters and that the clusters should be, in general, separated by an appropriate distance. This seriously degrades the signal sensitivity, however, for suitable conditions, space-based detector can separately detect scalar, vector and tensor modes of GWBs with energy density as low as ~10^-15.Comment: 16 pages, 11 figure

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer

    Full text link
    The detection of the Cosmic Microwave Background Radiation (CMB) was one of the most important cosmological discoveries of the last century. With the development of interferometric gravitational wave detectors, we may be in a position to detect the gravitational equivalent of the CMB in this century. The Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic, making it difficult to distinguish from instrument noise. The contribution from the CGB can be isolated by cross-correlating the signals from two or more independent detectors. Here we extend previous studies that considered the cross-correlation of two Michelson channels by calculating the optimal signal to noise ratio that can be achieved by combining the full set of interferometry variables that are available with a six link triangular interferometer. In contrast to the two channel case, we find that the relative orientation of a pair of coplanar detectors does not affect the signal to noise ratio. We apply our results to the detector design described in the Big Bang Observer (BBO) mission concept study and find that BBO could detect a background with Ωgw>2.2×10−17\Omega_{gw} > 2.2 \times 10^{-17}.Comment: 15 pages, 12 Figure

    An Experimental Overview of Results Presented at SQM 2006

    Get PDF
    I have been asked to give an critical overview on the experimental results shown in the conference with a emphasis of what has been learned and the challenges that are ahead in trying to understand the physics of the strongly interacting quark-gluon plasma. I will not try to summarize all of the results presented, rather I will concentrate primarily on RHIC data from this conference. Throughout this summary, I will periodically review some of the previous results for those not familiar with the present state of the field.Comment: 15 pages, 12 Figure

    PHENIX Highlights

    Full text link
    Recent highlights of measurements by the PHENIX experiment at RHIC are presented.Comment: 8 pages, 9 figures. Talk at Quark Matter 200

    Effects of finite arm-length of LISA on analysis of gravitational waves from MBH binaries

    Get PDF
    Response of an interferometer becomes complicated for gravitational wave shorter than the arm-length of the detector, as nature of wave appears strongly. We have studied how parameter estimation for merging massive black hole binaries are affected by this complicated effect in the case of LISA. It is shown that three dimensional positions of some binaries might be determined much better than the past estimations that use the long wave approximation. For equal mass binaries this improvement is most prominent at \sim 10^5\sol.Comment: 10 pages, 3 figures, to appear in Phys.Rev.
    • 

    corecore