4 research outputs found

    Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin

    Get PDF
    The role of cardiac troponins as diagnostic biomarkers of myocardial injury in the context of acute coronary syndrome (ACS) is well established. Since the initial 1st-generation assays, 5th-generation high-sensitivity cardiac troponin (hs-cTn) assays have been developed, and are now widely used. However, its clinical adoption preceded guidelines and even best practice evidence. This review summarizes the history of cardiac biomarkers with particular emphasis on hs-cTn. We aim to provide insights into using hs-cTn as a quantitative marker of cardiomyocyte injury to help in the differential diagnosis of coronary versus non-coronary cardiac diseases. We also review the recent evidence and guidelines of using hs-cTn in suspected ACS

    Left ventricular blood flow kinetic energy after myocardial infarction - insights from 4D flow cardiovascular magnetic resonance

    Get PDF
    Background: Myocardial infarction (MI) leads to complex changes in left ventricular (LV) haemodynamics that are linked to clinical outcomes. We hypothesize that LV blood flow kinetic energy (KE) is altered in MI and is associated with LV function and infarct characteristics. This study aimed to investigate the intra-cavity LV blood flow KE in controls and MI patients, using cardiovascular magnetic resonance (CMR) four-dimensional (4D) flow assessment. Methods: Forty-eight patients with MI (acute-22; chronic-26) and 20 age/gender-matched healthy controls underwent CMR which included cines and whole-heart 4D flow. Patients also received late gadolinium enhancement imaging for infarct assessment. LV blood flow KE parameters were indexed to LV end-diastolic volume and include: averaged LV, minimal, systolic, diastolic, peak E-wave and peak A-wave KEiEDV. In addition, we investigated the in-plane proportion of LV KE (%) and the time difference (TD) to peak E-wave KE propagation from base to mid-ventricle was computed. Association of LV blood flow KE parameters to LV function and infarct size were investigated in all groups. Results: LV KEiEDV was higher in controls than in MI patients (8.5 ± 3 μJ/ml versus 6.5 ± 3 μJ/ml, P = 0.02). Additionally, systolic, minimal and diastolic peak E-wave KEiEDV were lower in MI (P < 0.05). In logistic-regression analysis, systolic KEiEDV (Beta = − 0.24, P < 0.01) demonstrated the strongest association with the presence of MI. In multiple-regression analysis, infarct size was most strongly associated with in-plane KE (r = 0.5, Beta = 1.1, P < 0.01). In patients with preserved LV ejection fraction (EF), minimal and in-plane KEiEDV were reduced (P < 0.05) and time difference to peak E-wave KE propagation during diastole increased (P < 0.05) when compared to controls with normal EF. Conclusions: Reduction in LV systolic function results in reduction in systolic flow KEiEDV. Infarct size is independently associated with the proportion of in-plane LV KE. Degree of LV impairment is associated with TD of peak E-wave KE. In patient with preserved EF post MI, LV blood flow KE mapping demonstrated significant changes in the in-plane KE, the minimal KEiEDV and the TD. These three blood flow KE parameters may offer novel methods to identify and describe this patient population

    Coronary blood flow quantification from X-ray angiography

    No full text
    Coronary angiography provides anatomical information about the epicardial coronary arteries but is poor at evaluating coronary microcirculation. Coronary blood flow (CBF) measurements would be a superior tool for evaluation of coronary circulation but are difficult to perform in cardiac catheterisation laboratory in real time. A workflow for quantification of CBF using X-ray signal intensity analysis of coronary angiogram images was developed at the University of Leeds using a custom-built computer software – herein referred to as the ‘X-ray Blood Flow’ (XBF) method. A bench study and two human pilot studies were conducted to test the feasibility of quantification of CBF using the XBF method. The bench study utilised a cardiac phantom that simulated CBF. The first human validation study compared XBF flow to CBF measured by continuous thermodilution technique. The second human study in ST elevation myocardial infarction (STEMI) patients study sought to establish the safety and utility of the XBF method by correlating the XBF flow and resistance measurements after primary percutaneous intervention to infarct parameters from cardiovascular magnetic resonance (CMR) imaging
    corecore