41 research outputs found
Levodopa/carbidopa/entacapone 200/50/200 mg (Stalevo® 200) in the treatment of Parkinson’s disease: a case series
Levodopa continues to be the most efficacious and widely used treatment for Parkinson’s disease. Levodopa dosing is understood to be critical for the optimal control of symptoms, and increasing the levodopa dose is a common method to treat advancing disease. Escalating levodopa dosages coupled with disease progression is associated with increasing likelihood of developing levodopa-induced dyskinesia. Moreover, frequent and complicated dosing schemes, combined with limited dose availability, leads to increasing pill burden and its associated impairment of patient adherence issues. Levodopa/carbidopa/entacapone has been shown to improve the pharmacokinetic profile of levodopa and provide superior symptomatic control compared with conventional levodopa/dopa decarboxylase inhibitor therapy. We report four case histories describing clinical experience of using levodopa/carbidopa/entacapone 200/50/200 mg, one of the latest doses of this formulation, in a range of patients with Parkinson’s disease. These cases illustrate that levodopa/carbidopa/entacapone 200/50/200 mg provides improvements in symptomatic control and convenience, and that switching to this dose was not associated with safety concerns
Recommended from our members
Insights into Pathophysiology from Medication-induced Tremor
Background: Medication-induced tremor (MIT) is common in clinical practice and there are many medications/drugs that can cause or exacerbate tremors. MIT typically occurs by enhancement of physiological tremor (EPT), but not all drugs cause tremor in this way. In this manuscript, we review how some common examples of MIT have informed us about the pathophysiology of tremor.
Methods: We performed a PubMed literature search for published articles dealing with MIT and attempted to identify articles that especially dealt with the medication’s mechanism of inducing tremor.
Results: There is a paucity of literature that deals with the mechanisms of MIT, with most manuscripts only describing the frequency and clinical settings where MIT is observed. That being said, MIT emanates from multiple mechanisms depending on the drug and it often takes an individualized approach to manage MIT in a given patient.
Discussion: MIT has provided some insight into the mechanisms of tremors we see in clinical practice. The exact mechanism of MIT is unknown for most medications that cause tremor, but it is assumed that in most cases physiological tremor is influenced by these medications. Some medications (epinephrine) that cause EPT likely lead to tremor by peripheral mechanisms in the muscle (β-adrenergic agonists), but others may influence the central component (amitriptyline). Other drugs can cause tremor, presumably by blockade of dopamine receptors in the basal ganglia (dopamine-blocking agents), by secondary effects such as causing hyperthyroidism (amiodarone), or by other mechanisms. We will attempt to discuss what is known and unknown about the pathophysiology of the most common MITs
Correction to: Two years later: Is the SARS-CoV-2 pandemic still having an impact on emergency surgery? An international cross-sectional survey among WSES members
Background: The SARS-CoV-2 pandemic is still ongoing and a major challenge for health care services worldwide. In the first WSES COVID-19 emergency surgery survey, a strong negative impact on emergency surgery (ES) had been described already early in the pandemic situation. However, the knowledge is limited about current effects of the pandemic on patient flow through emergency rooms, daily routine and decision making in ES as well as their changes over time during the last two pandemic years. This second WSES COVID-19 emergency surgery survey investigates the impact of the SARS-CoV-2 pandemic on ES during the course of the pandemic.
Methods: A web survey had been distributed to medical specialists in ES during a four-week period from January 2022, investigating the impact of the pandemic on patients and septic diseases both requiring ES, structural problems due to the pandemic and time-to-intervention in ES routine.
Results: 367 collaborators from 59 countries responded to the survey. The majority indicated that the pandemic still significantly impacts on treatment and outcome of surgical emergency patients (83.1% and 78.5%, respectively). As reasons, the collaborators reported decreased case load in ES (44.7%), but patients presenting with more prolonged and severe diseases, especially concerning perforated appendicitis (62.1%) and diverticulitis (57.5%). Otherwise, approximately 50% of the participants still observe a delay in time-to-intervention in ES compared with the situation before the pandemic. Relevant causes leading to enlarged time-to-intervention in ES during the pandemic are persistent problems with in-hospital logistics, lacks in medical staff as well as operating room and intensive care capacities during the pandemic. This leads not only to the need for triage or transferring of ES patients to other hospitals, reported by 64.0% and 48.8% of the collaborators, respectively, but also to paradigm shifts in treatment modalities to non-operative approaches reported by 67.3% of the participants, especially in uncomplicated appendicitis, cholecystitis and multiple-recurrent diverticulitis.
Conclusions: The SARS-CoV-2 pandemic still significantly impacts on care and outcome of patients in ES. Well-known problems with in-hospital logistics are not sufficiently resolved by now; however, medical staff shortages and reduced capacities have been dramatically aggravated over last two pandemic years
Motor and nonmotor complications in Parkinson's disease:an argument for continuous drug delivery?
The complications of long-term levodopa therapy for Parkinson’s disease (PD) include motor fluctuations, dyskinesias, and also nonmotor fluctuations—at least equally common, but less well appreciated—in autonomic, cognitive/psychiatric, and sensory symptoms. In seeking the pathophysiologic mechanisms, the leading hypothesis is that in the parkinsonian brain, intermittent, nonphysiological stimulation of striatal dopamine receptors destabilizes an already unstable system. Accordingly, a major goal of PD treatment in recent years has been the attainment of continuous dopaminergic stimulation (CDS)—or, less theoretically (and more clinically verifiable), continuous drug delivery (CDD). Improvements in the steadiness of the plasma profiles of various dopaminergic therapies may be a signal of progress. However, improvements in plasma profile do not necessarily translate into CDS, or even into CDD to the brain. Still, it is reassuring that clinical studies of approaches to CDD have generally been positive. Head-to-head comparative trials have often failed to uncover evidence favoring such approaches over an intermittent therapy. Nevertheless, the findings among recipients of subcutaneous apomorphine infusion or intrajejunal levodopa/carbidopa intestinal gel suggest that nonmotor PD symptoms or complications may improve in tandem with motor improvement. In vivo receptor binding studies may help to determine the degree of CDS that a dopaminergic therapy can confer. This may be a necessary first step toward establishing whether CDS is, in fact, an important determinant of clinical efficacy. Certainly, the complexities of optimal PD management, and the rationale for an underlying strategy such as CDS or CDD, have not yet been thoroughly elucidated