213 research outputs found

    Ion-Neutral Collisions in the Interstellar Medium: Wave Damping and Elimination of Collisionless Processes

    Full text link
    Most phases of the interstellar medium contain neutral atoms in addition to ions and electrons. This introduces differences in plasma physics processes in those media relative to the solar corona and the solar wind at a heliocentric distance of 1 astronomical unit. In this paper, we consider two well-diagnosed, partially-ionized interstellar plasmas. The first is the Diffuse Ionized Gas (DIG) which is probably the extensive phase in terms of volume. The second is the gas that makes up the Local Clouds of the Very Local Interstellar Medium (VLISM). Ion-neutral interactions seem to be important in both media. In the DIG, ion-neutral collisions are relatively rare, but sufficiently frequent to damp magnetohydrodynamic (MHD) waves (as well as propagating MHD eddies) within less than a parsec of the site of generation. This result raises interesting questions about the sources of turbulence in the DIG. In the case of the VLISM, the ion-neutral collision frequency is higher than that in the DIG, because the hydrogen is partially neutral rather than fully ionized. We present results showing that prominent features of coronal and solar wind turbulence seem to be absent in VLISM turbulence. For example, ion temperature does not depend on ion mass. This difference may be attributable to ion-neutral collisions, which distribute power from more effectively heated massive ions such as iron to other ion species and neutral atoms.Comment: Submitted to American Institute of Physics Conference Proceedings for conference "Partially Ionized Plasmas Throughout the Cosmos", Dastgeer Shaikh, edito

    Observational Tests of the Properties of Turbulence in the Very Local Interstellar Medium

    Get PDF
    The Very Local Interstellar Medium (VLISM) contains clouds which consist of partially-ionized plasma. These clouds can be effectively diagnosed via high resolution optical and ultraviolet spectroscopy of the absorption lines they form in the spectra of nearby stars. Among the information provided by these spectroscopic measurements are the root-mean-square velocity fluctuation due to turbulence in these clouds and the ion temperature, which may be partially determined by dissipation of turbulence. We consider whether this turbulence resembles the extensively studied and well-diagnosed turbulence in the solar wind and solar corona. Published observations are used to determine if the velocity fluctuations are primarily transverse to a large-scale magnetic field, whether the temperature perpendicular to the large scale field is larger than that parallel to the field, and whether ions with larger Larmor radii have higher temperatures than smaller gyroradius ions. Although a thorough investigation of the data is underway, a preliminary examination of the published data shows neither evidence for anisotropy of the velocity fluctuations or temperature, nor Larmor radius-dependent heating. These results indicate differences between solar wind and Local Cloud turbulence.Comment: Paper submitted to Nonlinear Processes in Geophysic

    Properties of Turbulence in the Very Local Interstellar Clouds

    Full text link
    We have investigated the degree to which turbulence in the Very Local Interstellar Clouds resembles the highly-studied turbulence in the solar corona and the solar wind. The turbulence diagnostics for the Local Clouds are the absorption line widths measured along 32 lines of sight to nearby stars, yielding measurements for 53 absorption components (Redfield and Linsky 2004). We have tested whether the Local Cloud turbulence has the following properties of turbulence in the solar corona or the solar wind: (a) velocity fluctuations mainly perpendicular to the average magnetic field, (b) a temperature anisotropy in the sense that the perpendicular temperature is larger than the parallel temperature (or at least enhanced relative to expectation), and (c) an ion temperature which is dependent on the ion Larmor radius, in the sense that more massive ions have higher temperatures. Our analysis of the data does not show compelling evidence for any of these properties in Local Cloud turbulence, indicating possible differences with heliospheric plasmas. In the case of anisotropy of velocity fluctuations, although the expected observational signature is not seen, we cannot exclude the possibility of relatively high degrees of anisotropy (anisotropy parameter ϵ∼0.50−0.70\epsilon \sim 0.50 - 0.70), if some other process in the the Local Clouds is causing variations in the turbulent line width from one line of sight to another. We briefly consider possible reasons for differences between coronal and solar wind turbulence and that in the Local Clouds.Comment: Submitted to the Astrophysical Journa
    • …
    corecore