3 research outputs found

    Potential of Igniscum sachalinensis

    Get PDF
    The potential of Salix viminalis L. and Igniscum sachalinensis L. for phytoremediation of copper- (Cu-) contaminated soils was studied under greenhouse conditions. Approximately 5 kg of potted agricultural and sewage amended soils sampled from the top 0 to 20 cm depth in Neuruppin, Germany, was treated with CuSO4 at concentrations 0 (control), 250, 750, and 1250 mg Cu kg−1 soil and ethylenediaminetetraacetic acid (EDTA) at 1000 mg kg−1 soil, respectively. Each plant species was grown on four replicates of each soil treatment. Copper accumulated in aboveground tissues tends to increase with increasing soil Cu concentration and was the lowest in stem and leaf of both plant species grown on control soils. At 750 and 1250 mg Cu kg−1 soil, Cu accumulated in stem and leaf of I. sachalinensis increased by over 12- and 20-fold, respectively, whereas there was no vegetative growth in S. viminalis beyond 250 mg Cu kg−1 soil. Application of EDTA to sewage amended soils increased Cu accumulated in the stem and leaf, especially in I. sachalinensis. In general, I. sachalinensis seems to have the potential to tolerate high soil Cu content and simultaneously bioaccumulate Cu in tissues and thus may have better prospects for phytoremediation

    Impact of Soil Compaction on Bulk Density and Root Biomass of Quercus petraea

    Get PDF
    The impact of soil compaction on bulk density and root biomass of Quercus petraea L. was assessed after 85 years of reclamation of post-lignite mining soil at Welzow-South, in Lusatia, Germany. Bulk density of core soils sampled from 20 to 25 cm, 100 to 105 cm, and 200 to 205 cm depths and oven-dried biomass of Q. petraea roots sampled from 0 to 30 cm and at successive depths of 20 cm, up to 210 cm depth at compacted and uncompacted sites were determined. Bulk density was significantly higher at 20 to 25 cm (1.74±0.09 g cm−3) and 100 to 105 cm (1.65±0.06 g cm−3) depths of the compacted site. Likewise, compaction induced significant greater root biomass within the 0 to 70 cm depth with higher bulk density; root biomass at this depth was 2-fold greater compared to the uncompacted site. Root biomass decreased with soil depth and showed significant relationship with depth at both sites. The result indicates that, after 85 years of reclamation, the impact of soil compaction persisted as evident in higher bulk density and greater root biomass
    corecore