172 research outputs found
Phospholamban inhibits the cardiac calcium pump by interrupting an allosteric activation pathway
Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.</p
TRIM5α associates with proteasomal subunits in cells while in complex with HIV-1 virions
<p>Abstract</p> <p>Background</p> <p>The TRIM5 proteins are cellular restriction factors that prevent retroviral infection in a species-specific manner. Multiple experiments indicate that restriction activity requires accessory host factors, including E2-enzymes. To better understand the mechanism of restriction, we conducted yeast-two hybrid screens to identify proteins that bind to two TRIM5 orthologues.</p> <p>Results</p> <p>The only cDNAs that scored on repeat testing with both TRIM5 orthologues were the proteasome subunit PSMC2 and ubiquitin. Using co-immunoprecipitation assays, we demonstrated an interaction between TRIM5α and PSMC2, as well as numerous other proteasome subunits. Fluorescence microscopy revealed co-localization of proteasomes and TRIM5α cytoplasmic bodies. Forster resonance energy transfer (FRET) analysis indicated that the interaction between TRIM5 and PSMC2 was direct. Previous imaging experiments demonstrated that, when cells are challenged with fluorescently-labeled HIV-1 virions, restrictive TRIM5α orthologues assemble cytoplasmic bodies around incoming virion particles. Following virus challenge, we observed localization of proteasome subunits to rhTRIM5α cytoplasmic bodies that contained fluorescently labeled HIV-1 virions.</p> <p>Conclusions</p> <p>Taken together, the results presented here suggest that localization of the proteasome to TRIM5α cytoplasmic bodies makes an important contribution to TRIM5α-mediated restriction.</p
Dysferlin Forms a Dimer Mediated by the C2 Domains and the Transmembrane Domain In Vitro and in Living Cells
Dysferlin was previously identified as a key player in muscle membrane repair and its deficiency leads to the development of muscular dystrophy and cardiomyopathy. However, little is known about the oligomerization of this protein in the plasma membrane. Here we report for the first time that dysferlin forms a dimer in vitro and in living adult skeletal muscle fibers isolated from mice. Endogenous dysferlin from rabbit skeletal muscle exists primarily as a ∼460 kDa species in detergent-solubilized muscle homogenate, as shown by sucrose gradient fractionation, gel filtration and cross-linking assays. Fluorescent protein (YFP) labeled human dysferlin forms a dimer in vitro, as demonstrated by fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analyses. Dysferlin also dimerizes in living cells, as probed by fluorescence resonance energy transfer (FRET). Domain mapping FRET experiments showed that dysferlin dimerization is mediated by its transmembrane domain and by multiple C2 domains. However, C2A did not significantly contribute to dimerization; notably, this is the only C2 domain in dysferlin known to engage in a Ca-dependent interaction with cell membranes. Taken together, the data suggest that Ca-insensitive C2 domains mediate high affinity self-association of dysferlin in a parallel homodimer, leaving the Ca-sensitive C2A domain free to interact with membranes
A Structural Mechanism for Calcium Transporter Headpiece Closure
[Image: see text] To characterize the conformational dynamics of sarcoplasmic reticulum (SR) calcium pump (SERCA) we performed molecular dynamics simulations beginning with several different high-resolution structures. We quantified differences in structural disorder and dynamics for an open conformation of SERCA versus closed structures and observed that dynamic motions of SERCA cytoplasmic domains decreased with decreasing domain–domain separation distance. The results are useful for interpretation of recent intramolecular Förster resonance energy transfer (FRET) distance measurements obtained for SERCA fused to fluorescent protein tags. Those previous physical measurements revealed several discrete structural substates and suggested open conformations of SERCA are more dynamic than compact conformations. The present simulations support this hypothesis and provide additional details of SERCA molecular mechanisms. Specifically, all-atoms simulations revealed large-scale translational and rotational motions of the SERCA N-domain relative to the A- and P-domains during the transition from an open to a closed headpiece conformation over the course of a 400 ns trajectory. The open-to-closed structural transition was accompanied by a disorder-to-order transition mediated by an initial interaction of an N-domain loop (Nβ5-β6, residues 426–436) with residues 133–139 of the A-domain. Mutation of three negatively charged N-domain loop residues abolished the disorder-to-order transition and prevented the initial domain–domain interaction and subsequent closure of the cytoplasmic headpiece. Coarse-grained molecular dynamics simulations were in harmony with all-atoms simulations and physical measurements and revealed a close communication between fluorescent protein tags and the domain to which they were fused. The data indicate that previous intramolecular FRET distance measurements report SERCA structure changes with high fidelity and suggest a structural mechanism that facilitates the closure of the SERCA cytoplasmic headpiece
Dynamic Conformational Transitions of Sarcoendoplasmic Reticulum Ca-ATPase (SERCA) Quantified by Single Molecule FRET
Fluorescence Resonance Energy Transfer Reveals that Serca Dimerizes and Forms a Complex with Phospholamban in a 2:1 Stoichiometry
Abstract 16905: Fluorescence Resonance Energy Transfer Reveals that Cardiac Calcium ATPase Dimerizes and Forms a Complex with Phospholamban in a 2:1 Stoichiometry
The sarco/endoplasmic reticulum calcium ATPase (SERCA) has been proposed to form functional dimers in vitro. In order to investigate whether SERCA forms homo-dimers in live cells, we fused canine SERCA2a to cerulean (Cer) or yellow fluorescent protein (YFP), and quantified SERCA-SERCA interactions by fluorescence resonance energy transfer (FRET). SERCA-SERCA FRET efficiency was dependent on the labeling position of the fluorescent protein tags, with the highest FRET efficiency achieved when the respective fluorescent proteins were fused to SERCA N-termini. FRET was reduced by competition with unlabeled SERCA, suggesting that the observed FRET was due to specific protein-protein interactions. Progressive photobleaching of YFP showed that Cer intensity increased linearly with decreasing YFP intensity, suggesting that the stoichiometry of the SERCA complex is a dimer. In contrast, a control experiment with phospholamban (PLB) oligomer showed a non-linear YFP/Cer relationship, consistent with its well-known pentameric stoichiometry. We also investigated whether SERCA dimers could interact with PLB, the regulatory binding partner of SERCA. Interestingly, while average maximal FRET was 28% between SERCA and PLB, fluorescence lifetime measurements revealed two different lifetimes, consistent with two different populations of FRET donors. One population showed very low FRET, while the other population exhibited high FRET- approximately double the measured average maximal FRET efficiency. The data are consistent with a single PLB bound to each SERCA homo-dimer; in this regulatory complex one SERCA protomer is in close proximity to PLB (50 Å), while the other is too far away to participate in FRET with PLB.</jats:p
Binding Affinity of Serca Regulatory Complexes Quantified by Steered Molecular Dynamics Simulations
Interaction of SERCA with the Transmembrane Domain of Phospholamban Measured by FRET in Live Cells
- …
