110 research outputs found
Identification of black sturgeon caviar pigment as eumelanin
Reported herein is the purification of the pigment of black sturgeon caviar and its unambiguous identification as a typical eumelanin by means of chemical degradation coupled with electron paramagnetic resonance (EPR) evidence. HPLC and LC-MS analysis of oxidative degradation mixtures revealed the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA), a specific marker of eumelanin pigments, in yields compatible with a 6.5% w/w pigment content. EPR spectral features and parameters were in close agreement with those reported for a typical natural eumelanin such as Sepia melanin from squid ink. The identification for the first time of eumelanin in a fish roe is expected to provide a novel molecular basis for the valorization of black caviar and production wastes thereof in food chemistry and diet
Preserving p-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications
Covalent functionalization tailors carbon nanotubes for a wide range of applications in varying environments. Its strength and stability of attachment come at the price of degrading the carbon nanotubes sp 2 network and destroying the tubes electronic and optoelectronic features. Here we present a non-destructive, covalent, gram-scale functionalization of single-walled carbon nanotubes by a new 2+1] cycloaddition. The reaction rebuilds the extended p-network, thereby retaining the outstanding quantum optoelectronic properties of carbon nanotubes, including bright light emission at high degree of functionalization (1 group per 25 carbon atoms). The conjugation method described here opens the way for advanced tailoring nanotubes as demonstrated for light-triggered reversible doping through photochromic molecular switches and nanoplasmonic gold-nanotube hybrids with enhanced infrared light emission
Classical Loop Actions of Gauge Theories
Since the first attempts to quantize Gauge Theories and Gravity in the loop
representation, the problem of the determination of the corresponding classical
actions has been raised. Here we propose a general procedure to determine these
actions and we explicitly apply it in the case of electromagnetism. Going to
the lattice we show that the electromagnetic action in terms of loops is
equivalent to the Wilson action, allowing to do Montecarlo calculations in a
gauge invariant way. In the continuum these actions need to be regularized and
they are the natural candidates to describe the theory in a ``confining
phase''.Comment: LaTeX 14 page
The effect of acute vs chronic magnesium supplementation on exercise and recovery on resistance exercise, blood pressure and total peripheral resistance on normotensive adults
© 2015 Kass and Poeira; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Magnesium supplementation has previously shown reductions in blood pressure of up to 12 mmHg. A positive relationship between magnesium supplementation and performance gains in resistance exercise has also been seen. However, no previous studies have investigated loading strategies to optimise response. The aim of this study was to assess the effect of oral magnesium supplementation on resistance exercise and vascular response after intense exercise for an acute and chronic loading strategy on a 2-day repeat protocol. Methods: The study was a randomised, double-blind, cross-over design, placebo controlled 2 day repeat measure protocol (n = 13). Intense exercise (40 km time trial) was followed by bench press at 80% 1RM to exhaustion, with blood pressure and total peripheral resistance (TPR) recorded. 300 mg/d elemental magnesium was supplemented for either a 1 (A) or 4 (Chr) week loading strategy. Food diaries were recorded. Results: Dietary magnesium intake was above the Reference Nutrient Intake (RNI) for all groups. Bench press showed a significant increase of 17.7% (p = 0.031) for A on day 1. On day 2 A showed no decrease in performance whilst Chr showed a 32.1% decrease. On day 2 post-exercise systolic blood pressure (SBP) was significantly lower in both A (p = 0.0.47) and Chr (p = 0.016) groups. Diastolic blood pressure (DBP) showed significant decreases on day 2 solely for A (p = 0.047) with no changes in the Chr. TPR reduced for A on days 1 and 2 (p = 0.031) with Chr showing an increase on day 1 (p = 0.008) and no change on day 2. Conclusion: There was no cumulative effect of Chr supplementation compared to A. A group showed improvement for bench press concurring with previous research which was not seen in Chr. On day 2 A showed a small non-significant increase but not a decrement as expected with Chr showing a decrease. DBP showed reductions in both Chr and A loading, agreeing with previous literature. This is suggestive of a different mechanism for BP reduction than for muscular strength. TPR showed greater reductions with A than Chr, which would not be expected as both interventions had reductions in BP, which is associated with TPR.Peer reviewedFinal Published versio
In situ nutrient assays of periphyton growth in a lowland Costa Rican stream
Nutrient limitation of primary production was experimentally assessed using an in situ bioassay technique in the Quebrada Salto, a third-order tropical stream draining the northern foothills of the Cordillera Central in Costa Rica. Bioassays employed artificial substrata enriched with nutrients that slowly diffuse through an agar-sand matrix (Pringle & Bowers, 1984). Multiple comparisons of regression coefficients, describing chlorophyll- a accrual through time for different nutrient treatments, revealed positive micronutrient effect(s). Micronutrient treatment combinations (Fe, B, Mn, Zn, Co, Mo, EDTA), supplemented with and without nitrate and phosphate, exhibited significantly greater chlorophyll- a accrual over all other treatments (P < 0.05), supporting over three times that of the control after 14-d of substratum colonization. Neither of the major nutrients (N or P) produced a significant stimulation, although the N treatment displayed â50% more chlorophyll- a than the control after 14-d. Similarly, Si, EDTA, and Si + N + P treatments did not exhibit chlorophyll- a response curves that were significantly different from the control. During the experiment, mean NH 4 -N and (NO 2 + NO 3 )-N concentrations in the Salto were 2.0 ”M (28.6 ”g · l â1 ) and 7.2 ”M (100.2 ”g · l â1 ), respectively. High concentrations of PO 4 -P ( = 2.0 ”M; 60.9 ”g · l â1 ) and TP ( = 3.0 ”M; 94.0 ”g · l â1 ) were also found, and consequently low molar N:P ratios = 4.7). Despite the potential for N limitation in the system, both N and P appear to be at growth saturating levels. This may be due to micronutrient limitation and/or light limitation of periphyton growth in densely shaded upstream portions of the stream.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42872/1/10750_2004_Article_BF00008489.pd
Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension
Inspired by the commercially available SDS surfactant, a new polyglycerol-derived amphiphile has been
synthesized for functionalizing carbon nanotubes. SDSâ sulphate group was replaced by a polyglycerol
dendron. The steric hindrance offered by the dendrons makes the compound much more efficient than
SDS in isolating and stabilizing nanotubes in solution. Further amphiphiles have been synthesized by
adding small aromatic moieties between head and tail groups. We show that this addition leads to selective
interaction between surfactants and carbon nanotubes. Excitation photoluminescence and optical
absorption spectroscopy analysis confirm the change in the distribution of nanotubesâ chiralities in suspension,
depending on the amphiphile
Identification of black sturgeon caviar pigment as eumelanin
Reported herein is the purification of the pigment of black sturgeon caviar and its unambiguous identification as a typical eumelanin by means of chemical degradation coupled with electron paramagnetic resonance (EPR) evidence. HPLC and LC-MS analysis of oxidative degradation mixtures revealed the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA), a specific marker of eumelanin pigments, in yields compatible with a 6.5% w/w pigment content. EPR spectral features and parameters were in close agreement with those reported for a typical natural eumelanin such as Sepia melanin from squid ink. The identification for the first time of eumelanin in a fish roe is expected to provide a novel molecular basis for the valorization of black caviar and production wastes thereof in food chemistry and diet
- âŠ