116 research outputs found
Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats
<p>Abstract</p> <p>Background</p> <p>It has been reported that the P2Y<sub>12 </sub>receptor (P2Y<sub>12</sub>R) is involved in satellite glial cells (SGCs) activation, indicating that P2Y<sub>12</sub>R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y<sub>12</sub>R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y<sub>12</sub>R and glial fibrillary acidic protein (GFAP) immunohistochemistries in the trigeminal ganglion (TG) in a rat model of unilateral lingual nerve crush (LNC) to evaluate role of P2Y<sub>12</sub>R in SGC in lingual neuropathic pain.</p> <p>Results</p> <p>The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR) cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y<sub>12</sub>R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN)-IR cells (i.e. neurons) in TG. After 3 days of successive administration of the P2Y<sub>12</sub>R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats.</p> <p>Conclusions</p> <p>The present findings provide the first evidence that the activation of P2Y<sub>12</sub>R in SGCs of TG following lingual nerve injury is involved in the enhancement of TG neuron activity and nocifensive reflex behavior, resulting in neuropathic pain in the tongue.</p
Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment
<p>Abstract</p> <p>Background</p> <p>In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn) and upper cervical spinal cord (C1-C2) nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK) in Vc and C1-C2 neurons were studied in rats.</p> <p>Results</p> <p>Compared to vehicle application, capsaicin application to the lateral facial skin produced 1 hour later a flare in the skin, and also induced significantly greater nocifensive behaviors to heat, cold or mechanical stimulus of the lateral facial skin. The intrathecal (i.t.) injection of the MEK inhibitor PD98059 markedly attenuated the nocifensive behaviors to these stimuli in capsaicin-treated rats. Moreover, the number of pERK-like immunoreactive (pERK-LI) cells in Vc and C1-C2 was significantly larger following the heat, cold and mechanical stimuli in capsaicin-treated rats compared with vehicle-treated rats. The number of pERK-LI cells gradually increased following progressive increases in the heat or mechanical stimulus intensity and following progressive decrease in the cold stimulus. The ERK phosphorylation in Vc and C1-C2 neurons was strongly inhibited after subcutaneous injection of the capsaicin antagonist capsazepine in capsaicin-treated rats.</p> <p>Conclusion</p> <p>The present findings revealed that capsaicin treatment of the lateral facial skin causes an enhancement of ERK phosphorylation in Vc and C1-C2 neurons as well as induces nocifensive behavior to heat, cold and mechanical simulation of the capsaicin-treated skin. The findings suggest that TRPV1 receptor mechanisms in rat facial skin influence nociceptive responses to noxious cutaneous thermal and mechanical stimuli by inducing neuroplastic changes in Vc and C1-C2 neurons that involve in the MAP kinase cascade.</p
Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats
<p>Abstract</p> <p>Background</p> <p>The aim of this study is to clarify the neural mechanisms underlying orofacial pain abnormalities after cervical spinal nerve injury. Nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK) expression and astroglial cell activation in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal dorsal horn (C1-C2) neurons were analyzed in rats with upper cervical spinal nerve transection (CNX).</p> <p>Results</p> <p>The head withdrawal threshold to mechanical stimulation of the lateral facial skin and head withdrawal latency to heating of the lateral facial skin were significantly lower and shorter respectively in CNX rats compared to Sham rats. These nocifensive effects were apparent within 1 day after CNX and lasted for more than 21 days. The numbers of pERK-like immunoreactive (LI) cells in superficial laminae of Vc and C1-C2 were significantly larger in CNX rats compared to Sham rats following noxious and non-noxious mechanical or thermal stimulation of the lateral facial skin at day 7 after CNX. Two peaks of pERK-LI cells were observed in Vc and C1-C2 following mechanical and heat stimulation of the lateral face. The number of pERK-LI cells in C1-C2 was intensity-dependent and increased when the mechanical and heat stimulations of the face were increased. The decrements of head withdrawal latency to heat and head withdrawal threshold to mechanical stimulation were reversed during intrathecal (i.t.) administration of MAPK/ERK kinase 1/2 inhibitor PD98059. The area of activated astroglial cells was significantly higher in CNX rats (at day 7 after CNX). The heat and mechanical nocifensive behaviors were significantly depressed and the number of pERK-LI cells in Vc and C1-C2 following noxious and non-noxious mechanical stimulation of the face was also significantly decreased following i.t. administration of the astroglial inhibitor fluoroacetate.</p> <p>Conclusions</p> <p>The present findings have demonstrated that mechanical allodynia and thermal hyperalgesia occur in the lateral facial skin after CNX and also suggest that ERK phosphorylation of Vc and C1-C2 neurons and astroglial cell activation are involved in orofacial extraterritorial pain following cervical nerve injury.</p
Alteration of primary afferent activity following inferior alveolar nerve transection in rats
<p>Abstract</p> <p>Background</p> <p>In order to evaluate the neural mechanisms underlying the abnormal facial pain that may develop following regeneration of the injured inferior alveolar nerve (IAN), the properties of the IAN innervated in the mental region were analyzed.</p> <p>Results</p> <p>Fluorogold (FG) injection into the mental region 14 days after IAN transection showed massive labeling of trigeminal ganglion (TG). The escape threshold to mechanical stimulation of the mental skin was significantly lower (i.e. mechanical allodynia) at 11-14 days after IAN transection than before surgery. The background activity, mechanically evoked responses and afterdischarges of IAN Aδ-fibers were significantly higher in IAN-transected rats than naive. The small/medium diameter TG neurons showed an increase in both tetrodotoxin (TTX)-resistant (TTX-R) and -sensitive (TTX-S) sodium currents (<it>I</it><sub>Na</sub>) and decrease in total potassium current, transient current (<it>I</it><sub>A</sub>) and sustained current (<it>I</it><sub>K</sub>) in IAN-transected rats. The amplitude, overshoot amplitude and number of action potentials evoked by the depolarizing pulses after 1 μM TTX administration in TG neurons were significantly higher, whereas the threshold current to elicit spikes was smaller in IAN-transected rats than naive. Resting membrane potential was significantly smaller in IAN-transected rats than that of naive.</p> <p>Conclusions</p> <p>These data suggest that the increase in both TTX-S <it>I</it><sub>Na </sub>and TTX-R <it>I</it><sub>Na </sub>and the decrease in <it>I</it><sub>A </sub>and <it>I</it><sub>k </sub>in small/medium TG neurons in IAN-transected rats are involved in the activation of spike generation, resulting in hyperexcitability of Aδ-IAN fibers innervating the mental region after IAN transection.</p
Involvement of peripheral ionotropic glutamate receptors in orofacial thermal hyperalgesia in rats
<p>Abstract</p> <p>Background</p> <p>The purpose of the present study was to elucidate the mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) neurons to heat or cold stimulation of the orofacial region following glutamate (Glu) injection.</p> <p>Results</p> <p>Glu application to the tongue or whisker pad skin caused an enhancement of head-withdrawal reflex and extracellular signal-regulated kinase (ERK) phosphorylation in Vc-C2 neurons. Head-withdrawal reflex and ERK phosphorylation were also enhanced following cold stimulation of the tongue but not whisker pad skin in Glu-injected rats, and the head-withdrawal reflex and ERK phosphorylation were enhanced following heat stimulation of the tongue or whisker pad skin. The enhanced head-withdrawal reflex and ERK phosphorylation after heat stimulation of the tongue or whisker pad skin, and those following cold stimulation of the tongue but not whisker pad skin were suppressed following ionotropic glutamate receptor antagonists administration into the tongue or whisker pad skin. Furthermore, intrathecal administration of MEK1/2 inhibitor PD98059 caused significant suppression of enhanced head-withdrawal reflex in Glu-injected rats, heat head-withdrawal reflex in the rats with Glu injection into the tongue or whisker pad skin and cold head-withdrawal reflex in the rats with Glu injection into the tongue.</p> <p>Conclusions</p> <p>The present findings suggest that peripheral Glu receptor mechanisms may contribute to cold hyperalgesia in the tongue but not in the facial skin, and also contribute to heat hyperalgesia in the tongue and facial skin, and that the mitogen-activated protein kinase cascade in Vc-C2 neurons may be involved in these Glu-evoked hyperalgesic effects.</p
Unrelieved Pain: A Crisis
Despite many recent advances in the past 40 years in the understanding of pain mechanisms, and in pain diagnosis and management, considerable gaps in knowledge remain, with chronic pain present in epidemic proportions in most countries. It is often unrelieved and is associated with significant socioeconomic burdens. Several opportunities and approaches to address this crisis are identified in the present article. Most crucial is the need to increase pain awareness, enhance pain education, improve access to pain care and increase pain research resources. Given the variability among countries in health care policies and programs, resources and educational programs, many of the approaches and strategies outlined will need to be tailored to each country’s socioeconomic and educational situation
The Pain Crisis: What It Is and What Can Be Done
Chronic pain is present in epidemic proportions in most countries, is often unrelieved, and has a huge socioeconomic impact. It is not just a “medical” illness but indeed is a problem that faces all healthcare professional fields. Several steps are identified to address this crisis. These include approaches to enhance pain awareness and access to timely and effective care for pain, and educational and research approaches to improve the knowledge base of healthcare professionals and students and diagnostic and management procedures for pain. Several opportunities to enhance pain understanding, access, and management are also identified.Peer Reviewe
Craniofacial Pain: Brainstem Mechanisms
This article reviews recent research advances in animals that have identified critical neural elements in the brainstem receiving and transmitting craniofacial nociceptive inputs, as well as some of the mechanisms involved in the modulation and plasticity of nociceptive transmission. Nociceptive neurones in the trigeminal (V) brainstem sensory nuclear complex can be classified as nociceptive-specific (NS) or wide dynamic range (WDR). Some of these neurones respond exclusively to sensory inputs evoked by stimulation of facial skin or oral mucosa and have features suggesting that they are critical neural elements involved in the ability to localize an acute superficial pain and sense its intensity and duration. Many of the V brainstem nociceptive neurones, however, receive convergent inputs from afferents supplying deep craniofacial tissues (eg, dural vessel, muscle) and skin or mucosa. These neurones are likely involved in deep pain, including headache, because few nociceptive neurones receive inputs exclusively from afferents supplying these tissues. These extensive convergent input patterns also appear to be important factors in pain spread and referral, and in central mechanisms underlying neuroplastic changes in V neuronal properties that may occur with injury and inflammation. For example, application of the small fibre excitant and inflammatory irritant mustard oil into the temporomandibular joint, masseter or tongue musculature induces a prolonged but reversible enhancement of responses to cutaneous and deep afferent inputs of most WDR and NS neurones. These effects may be accompanied by increased electromyographic activity reflexly induced in the masticatory muscles by mustard oil, and involve endogenous N-methyl-D-aspartate and opioid neurochemical mechanisms. Such peripherally induced modulation of brainstem nociceptive neuronal properties reflects the functional plasticity of the central V system, and may be involved in the development of headache and other conditions that manifest craniofacial pain and neuromuscular dysfunction.Peer Reviewe
Unrelieved Pain: A Crisis
Despite many recent advances in the past 40 years in the understanding of pain mechanisms, and in pain diagnosis and management, considerable gaps in knowledge remain, with chronic pain present in epidemic proportions in most countries. It is often unrelieved and is associated with significant socioeconomic burdens. Several opportunities and approaches to address this crisis are identified in the present article. Most crucial is the need to increase pain awareness, enhance pain education, improve access to pain care and increase pain research resources. Given the variability among countries in health care policies and programs, resources and educational programs, many of the approaches and strategies outlined will need to be tailored to each country’s socioeconomic and educational situation.Peer Reviewe
- …