84 research outputs found
Multiple Description Vector Quantization with Lattice Codebooks: Design and Analysis
The problem of designing a multiple description vector quantizer with lattice
codebook Lambda is considered. A general solution is given to a labeling
problem which plays a crucial role in the design of such quantizers. Numerical
performance results are obtained for quantizers based on the lattices A_2 and
Z^i, i=1,2,4,8, that make use of this labeling algorithm. The high-rate
squared-error distortions for this family of L-dimensional vector quantizers
are then analyzed for a memoryless source with probability density function p
and differential entropy h(p) < infty. For any a in (0,1) and rate pair (R,R),
it is shown that the two-channel distortion d_0 and the channel 1 (or channel
2) distortions d_s satisfy lim_{R -> infty} d_0 2^(2R(1+a)) = (1/4) G(Lambda)
2^{2h(p)} and lim_{R -> infty} d_s 2^(2R(1-a)) = G(S_L) 2^2h(p), where
G(Lambda) is the normalized second moment of a Voronoi cell of the lattice
Lambda and G(S_L) is the normalized second moment of a sphere in L dimensions.Comment: 46 pages, 14 figure
Hybrid numerical scheme for time-evolving wave fields
Many problems in geophysics, acoustics, elasticity theory, cancer treatment, food process control and electrodynamics involve study of wave field synthesis (WFS) in some form or another. In the present work, modelling of wave propagation phenomena is studied as a static problem, using finite element method and treating time as an additional spatial dimension. In particular, WFS problems are analysed using discrete methods. It is shown that a fully finite element-based scheme is very natural and effective method for the solution of such problems.
Distributed WFS in the context of two-dimensional problems is outlined and incorporation of any geometric or material non-linearities is shown to be straightforward. This has significant implications for problems in geophysics or biological media, where material inhomogeneities are quite prevalent. Numerical results are presented for several problems referring to media with material inhomogeneities and predefined absorption profiles. The method can be extended to three-dimensional problems involving anisotropic media properties in a relatively straightforward manner
Damage investigation on welded tubes of a reforming furnace
In this work the creep damage of radiant tubes of a reforming furnace has been investigated. The considered furnacecontains a battery of tubes constructed by butt welding three spun cast pieces, made of ASTM 608 HP-Nb alloy.They are designed to operate at temperatures of about 900°C, pressures of about 30 bars and times of the order of100000 h. Tubes were inspected during the plant stops scheduled every two years, in order to identify and replacethe damaged ones with the aim to ensure conditions of safe operation in the furnace. They were selected though acriterion based on measures of the internal diameter deformation performed in situ by Laser Optic Tube InspectionSystem (LOTIS). For a verification of this method, optical and scanning electron microscopy observation, Vickersmicroharndess and creep tests have been carried out on samples taken from tubes put out of service
FOLFIRINOX after first-line gemcitabine-based chemotherapy in advanced pancreatic cancer: a retrospective comparison with FOLFOX and FOLFIRI schedules
Background: Pancreatic adenocarcinoma is the fourth leading cause of cancer-related death. In cases with metastasis, the combination of 5-fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) or gemcitabine-based chemotherapy regimens are considered the standard of care. However, the optimal sequence of these regimens is unclear. Methods: This retrospective study initially evaluated 186 patients with locally advanced/metastatic pancreatic cancer at three Italian institutions between February 2013 and October 2019. All patients had progressed after receiving gemcitabine-based first-line chemotherapy and were subsequently offered second-line FOLFIRINOX, FOLFOX-6, or FOLFIRI treatment. This study evaluated progression-free survival (PFS), overall survival from the start of second-line treatment (OS2), overall survival from the start of first-line treatment (OS1), and safety outcomes. Results: A total of 77 patients received ⩾4 cycles of second-line chemotherapy and were considered eligible: 15 patients received FOLFIRINOX, 32 patients received FOLFOX-6, and 30 patients received FOLFIRI. The FOLFIRINOX group had median PFS of 26.29 weeks and median OS2 of 47.86 weeks, while the FOLFIRI group had median PFS of 10.57 weeks and median OS2 of 25.00 weeks (p = 0.038). No significant differences were observed between the FOLFIRINOX and FOLFOX-6 groups in terms of PFS (26.29 weeks versus 23.07 weeks) or OS2 (47.86 weeks versus 42.00 weeks). The most common grade 3–4 toxicities were anemia, neutropenia, and thrombocytopenia, which occurred more frequently in the FOLFIRINOX and FOLFOX-6 groups. Conclusion: Relative to the FOLFIRI regimen, the FOLFIRINOX regimen had a favorable toxicity profile and better survival outcomes. No significant differences were observed relative to the FOLFOX-6 regimen
Consolidative thoracic radiation therapy for extensive-stage small cell lung cancer in the era of first-line chemoimmunotherapy: preclinical data and a retrospective study in Southern Italy
Background: Consolidative thoracic radiotherapy (TRT) has been commonly used in the management of extensive-stage small cell lung cancer (ES-SCLC). Nevertheless, phase III trials exploring first-line chemoimmunotherapy have excluded this treatment approach. However, there is a strong biological rationale to support the use of radiotherapy (RT) as a boost to sustain anti-tumor immune responses. Currently, the benefit of TRT after chemoimmunotherapy remains unclear. The present report describes the real-world experiences of 120 patients with ES-SCLC treated with different chemoimmunotherapy combinations. Preclinical data supporting the hypothesis of anti-tumor immune responses induced by RT are also presented. Methods: A total of 120 ES-SCLC patients treated with chemoimmunotherapy since 2019 in the South of Italy were retrospectively analyzed. None of the patients included in the analysis experienced disease progression after undergoing first-line chemoimmunotherapy. Of these, 59 patients underwent TRT after a multidisciplinary decision by the treatment team. Patient characteristics, chemoimmunotherapy schedule, and timing of TRT onset were assessed. Safety served as the primary endpoint, while efficacy measured in terms of overall survival (OS) and progression-free survival (PFS) was used as the secondary endpoint. Immune pathway activation induced by RT in SCLC cells was explored to investigate the biological rationale for combining RT and immunotherapy. Results: Preclinical data supported the activation of innate immune pathways, including the STimulator of INterferon pathway (STING), gamma-interferon-inducible protein (IFI-16), and mitochondrial antiviral-signaling protein (MAVS) related to DNA and RNA release. Clinical data showed that TRT was associated with a good safety profile. Of the 59 patients treated with TRT, only 10% experienced radiation toxicity, while no ≥ G3 radiation-induced adverse events occurred. The median time for TRT onset after cycles of chemoimmunotherapy was 62 days. Total radiation dose and fraction dose of TRT include from 30 Gy in 10 fractions, up to definitive dose in selected patients. Consolidative TRT was associated with a significantly longer PFS than systemic therapy alone (one-year PFS of 61% vs. 31%, p<0.001), with a trend toward improved OS (one-year OS of 80% vs. 61%, p=0.027). Conclusion: Multi-center data from establishments in the South of Italy provide a general confidence in using TRT as a consolidative strategy after chemoimmunotherapy. Considering the limits of a restrospective analysis, these preliminary results support the feasibility of the approach and encourage a prospective evaluation
- …