280 research outputs found

    Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis

    Get PDF
    BACKGROUND: Texture analysis has been done on several radiological modalities to stage, differentiate, and predict prognosis in many oncologic tumors. PURPOSE: To determine the diagnostic accuracy of discriminating glioblastoma (GBM) from single brain metastasis (MET) by assessing the heterogeneity of both the solid tumor and the peritumoral edema with magnetic resonance imaging (MRI) texture analysis (MRTA). MATERIAL AND METHODS: Preoperative MRI examinations done on a 3-T scanner of 43 patients were included: 22 GBM and 21 MET. MRTA was performed on diffusion tensor imaging (DTI) in a representative region of interest (ROI). The MRTA was assessed using a commercially available research software program (TexRAD) which applies a filtration histogram technique for characterizing tumor and peritumoral heterogeneity. The filtration step selectively filters and extracts texture features at different anatomical scales varying from 2 mm (fine) to 6 mm (coarse). Heterogeneity quantification was obtained by the statistical parameter entropy. A threshold value to differentiate GBM from MET with sensitivity and specificity was calculated by receiver operating characteristic (ROC) analysis. RESULTS: Quantifying the heterogeneity of the solid part of the tumor showed no significant difference between GBM and MET. However, the heterogeneity of the GBMs peritumoral edema was significantly higher than the edema surrounding MET, differentiating them with a sensitivity of 80% and specificity of 90%. CONCLUSION: Assessing the peritumoral heterogeneity can increase the radiological diagnostic accuracy when discriminating GBM and MET. This will facilitate the medical staging and optimize the planning for surgical resection of the tumor and postoperative management

    Diagnostic performance of texture analysis on MRI in grading cerebral gliomas

    Get PDF
    Background and purpose: Grading of cerebral gliomas is important both in treatment decision and assessment of prognosis. The purpose of this study was to determine the diagnostic accuracy of grading cerebral gliomas by assessing the tumor heterogeneity using MRI texture analysis (MRTA). / Material and methods: 95 patients with gliomas were included, 27 low grade gliomas (LGG) all grade II and 68 high grade gliomas (HGG) (grade III = 34 and grade IV = 34). Preoperative MRI examinations were performed using a 3T scanner and MRTA was done on preoperative contrast-enhanced three-dimensional isotropic spoiled gradient echo images in a representative ROI. The MRTA was assessed using a commercially available research software program (TexRAD) that applies a filtration-histogram technique for characterizing tumor heterogeneity. Filtration step selectively filters and extracts texture features at different anatomical scales varying from 2 mm (fine features) to 6 mm (coarse features), the statistical parameter standard deviation (SD) was obtained. Receiver operating characteristics (ROC) was performed to assess sensitivity and specificity for differentiating between the different grades and calculating a threshold value to quantify the heterogeneity. / Results: LGG and HGG was best discriminated using SD at fine texture scale, with a sensitivity and specificity of 93% and 81% (AUC 0.910, p < 0.0001). The diagnostic ability for MRTA to differentiate between the different sub-groups (grade II–IV) was slightly lower but still significant. / Conclusions: Measuring heterogeneity in gliomas to discriminate HGG from LGG and between different histological sub-types on already obtained images using MRTA can be a useful tool to augment the diagnostic accuracy in grading cerebral gliomas and potentially hasten treatment decision

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope

    Spectrum and Morphology of the Two Brightest Milagro Sources in the Cygnus Region: MGRO J2019+37 and MGRO J2031+41

    Get PDF
    The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum is measured in the range 1 to 200 TeV using the last 3 years of Milagro data (2005-2008), with the detector in its final configuration. MGRO J2019+37 is detected with a significance of 12.3 standard deviations (σ\sigma), and is better fit by a power law with an exponential cutoff than by a simple power law, with a probability >98>98% (F-test). The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 72+5×10107^{+5}_{-2}\times10^{-10} s1m2TeV1\mathrm{s^{-1}\: m^{-2}\: TeV^{-1}}, a spectral index of 2.01.0+0.52.0^{+0.5}_{-1.0} and a cutoff energy of 2916+5029^{+50}_{-16} TeV. MGRO J2031+41 is detected with a significance of 7.3σ\sigma, with no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.40.5+0.6×10102.4^{+0.6}_{-0.5}\times10^{-10} s1m2TeV1\mathrm{s^{-1}\: m^{-2}\: TeV^{-1}} and a spectral index of 3.080.17+0.193.08^{+0.19}_{-0.17}. The overall flux is subject to an \sim30% systematic uncertainty. The systematic uncertainty on the power law indices is \sim0.1. A comparison with previous results from TeV J2032+4130, MGRO J2031+41 and MGRO J2019+37 is also presented.Comment: 11 pages, 10 figure

    RELICS: Strong Lens Models for Five Galaxy Clusters From the Reionization Lensing Cluster Survey

    Get PDF
    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at z>6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7-0349, and ACT-CLJ0102-49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space TelescopesComment: Accepted to Ap

    RELICS: High-Resolution Constraints on the Inner Mass Distribution of the z=0.83 Merging Cluster RXJ0152.7-1357 from strong lensing

    Get PDF
    Strong gravitational lensing (SL) is a powerful means to map the distribution of dark matter. In this work, we perform a SL analysis of the prominent X-ray cluster RXJ0152.7-1357 (z=0.83, also known as CL 0152.7-1357) in \textit{Hubble Space Telescope} images, taken in the framework of the Reionization Lensing Cluster Survey (RELICS). On top of a previously known z=3.93z=3.93 galaxy multiply imaged by RXJ0152.7-1357, for which we identify an additional multiple image, guided by a light-traces-mass approach we identify seven new sets of multiply imaged background sources lensed by this cluster, spanning the redshift range [1.79-3.93]. A total of 25 multiple images are seen over a small area of ~0.4 arcmin2arcmin^2, allowing us to put relatively high-resolution constraints on the inner matter distribution. Although modestly massive, the high degree of substructure together with its very elongated shape make RXJ0152.7-1357 a very efficient lens for its size. This cluster also comprises the third-largest sample of z~6-7 candidates in the RELICS survey. Finally, we present a comparison of our resulting mass distribution and magnification estimates with those from a Lenstool model. These models are made publicly available through the MAST archive.Comment: 15 Pages, 7 Figures, 4 Tables Accepted for publication in Ap

    A web-based library consult service for evidence-based medicine: Technical development

    Get PDF
    BACKGROUND: Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. RESULTS: To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. CONCLUSION: A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement

    RELICS: A Strong Lens Model for SPT-CLJ0615-5746, a z=0.972 Cluster

    Get PDF
    We present a lens model for the cluster SPT-CLJ0615-5746, which is the highest redshift (z=0.972z=0.972) system in the Reionization of Lensing Clusters Survey (RELICS), making it the highest redshift cluster for which a full strong lens model is published. We identify three systems of multiply-imaged lensed galaxies, two of which we spectroscopically confirm at z=1.358z=1.358 and z=4.013z=4.013, which we use as constraints for the model. We find a foreground structure at z0.4z\sim0.4, which we include as a second cluster-sized halo in one of our models; however two different statistical tests find the best-fit model consists of one cluster-sized halo combined with three individually optimized galaxy-sized halos, as well as contributions from the cluster galaxies themselves. We find the total projected mass density within r=26.7"r=26.7" (the region where the strong lensing constraints exist) to be M=2.510.09+0.15×1014M=2.51^{+0.15}_{-0.09}\times 10^{14}~M_{\odot}. If we extrapolate out to r500r_{500}, our projected mass density is consistent with the mass inferred from weak lensing and from the Sunyaev-Zel'dovich effect (M1015M\sim10^{15}~M_{\odot}). This cluster is lensing a previously reported z10z\sim10 galaxy, which, if spectroscopically confirmed, will be the highest-redshift strongly lensed galaxy known.Comment: 15 pages, 8 figures 4 tables. ApJ Accepte

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope
    corecore