3 research outputs found

    Effect of tuberculosis screening and retention interventions on early antiretroviral therapy mortality in Botswana: a stepped-wedge cluster randomized trial.

    Get PDF
    BACKGROUND: Undiagnosed tuberculosis (TB) remains the most common cause of HIV-related mortality. Xpert MTB/RIF (Xpert) is being rolled out globally to improve TB diagnostic capacity. However, previous Xpert impact trials have reported that health system weaknesses blunted impact of this improved diagnostic tool. During phased Xpert rollout in Botswana, we evaluated the impact of a package of interventions comprising (1) additional support for intensified TB case finding (ICF), (2) active tracing for patients missing clinic appointments to support retention, and (3) Xpert replacing sputum-smear microscopy, on early (6-month) antiretroviral therapy (ART) mortality. METHODS: At 22 clinics, ART enrollees >?12?years old were eligible for inclusion in three phases: a retrospective standard of care (SOC), prospective enhanced care (EC), and prospective EC plus Xpert (EC+X) phase. EC and EC+X phases were implemented as a stepped-wedge trial. Participants in the EC phase received SOC plus components 1 (strengthened ICF) and 2 (active tracing) of the intervention package, and participants in the EC+X phase received SOC plus all three intervention package components. Primary and secondary objectives were to compare all-cause 6-month ART mortality between SOC and EC+X and between EC and EC+X phases, respectively. We used adjusted analyses, appropriate for study design, to control for baseline differences in individual-level factors and intra-facility correlation. RESULTS: We enrolled 14,963 eligible patients: 8980 in SOC, 1768 in EC, and 4215 in EC+X phases. Median age of ART enrollees was 35 and 64% were female. Median CD4 cell count was lower in SOC than subsequent phases (184/?L in SOC, 246/?L in EC, and 241/?L in EC+X). By 6?months of ART, 461 (5.3%) of SOC, 54 (3.2%) of EC, and 121 (3.0%) of EC+X enrollees had died. Compared with SOC, 6-month mortality was lower in the EC+X phase (adjusted hazard ratio, 0.77; 95% confidence interval, 0.61-0.97, p?=?0.029). Compared with EC enrollees, 6-month mortality was similar among EC+X enrollees. CONCLUSIONS: Interventions to strengthen ICF and retention were associated with lower early ART mortality. This new evidence highlights the need to strengthen ICF and retention in many similar settings. Similar to other trials, no additional mortality benefit of replacing sputum-smear microscopy with Xpert was observed. TRIAL REGISTRATION: Retrospectively registered: ClinicalTrials.gov (NCT02538952)

    Risk scores for predicting early antiretroviral therapy mortality in sub-Saharan Africa to inform who needs intensification of care: a derivation and external validation cohort study.

    Get PDF
    BACKGROUND: Clinical scores to determine early (6-month) antiretroviral therapy (ART) mortality risk have not been developed for sub-Saharan Africa (SSA), home to 70% of people living with HIV. In the absence of validated scores, WHO eligibility criteria (EC) for ART care intensification are CD4  37.5 °C (2 points). The same variables plus CD4 < 200/μL (1 point) were included in the CD4-dependent score. Among XPRES enrollees, a CD4-independent score of ≥ 4 would provide 86% sensitivity and 66% specificity, whereas WHO EC would provide 83% sensitivity and 58% specificity. If WHO stage alone was used, sensitivity was 48% and specificity 89%. Among TBFT enrollees, the CD4-independent score of ≥ 4 would provide 95% sensitivity and 27% specificity, whereas WHO EC would provide 100% sensitivity but 0% specificity. Accuracy was similar between CD4-independent and CD4-dependent scores. Categorizing CD4-independent scores into low (< 4), moderate (4-6), and high risk (≥ 7) gave 6-month mortality of 1%, 4%, and 17% for XPRES and 1%, 5%, and 30% for TBFT enrollees. CONCLUSIONS: Sensitivity of the CD4-independent score was nearly twice that of WHO stage in predicting 6-month mortality and could be used in settings lacking CD4 testing to inform ART care intensification. The CD4-dependent score improved specificity versus WHO EC. Both scores should be considered for scale-up in SSA

    Derivation and external validation of a risk score for predicting HIV-associated tuberculosis to support case finding and preventive therapy scale-up: A cohort study.

    Get PDF
    BACKGROUND: Among people living with HIV (PLHIV), more flexible and sensitive tuberculosis (TB) screening tools capable of detecting both symptomatic and subclinical active TB are needed to (1) reduce morbidity and mortality from undiagnosed TB; (2) facilitate scale-up of tuberculosis preventive therapy (TPT) while reducing inappropriate prescription of TPT to PLHIV with subclinical active TB; and (3) allow for differentiated HIV-TB care. METHODS AND FINDINGS: We used Botswana XPRES trial data for adult HIV clinic enrollees collected during 2012 to 2015 to develop a parsimonious multivariable prognostic model for active prevalent TB using both logistic regression and random forest machine learning approaches. A clinical score was derived by rescaling final model coefficients. The clinical score was developed using southern Botswana XPRES data and its accuracy validated internally, using northern Botswana data, and externally using 3 diverse cohorts of antiretroviral therapy (ART)-naive and ART-experienced PLHIV enrolled in XPHACTOR, TB Fast Track (TBFT), and Gugulethu studies from South Africa (SA). Predictive accuracy of the clinical score was compared with the World Health Organization (WHO) 4-symptom TB screen. Among 5,418 XPRES enrollees, 2,771 were included in the derivation dataset; 67% were female, median age was 34 years, median CD4 was 240 cells/μL, 189 (7%) had undiagnosed prevalent TB, and characteristics were similar between internal derivation and validation datasets. Among XPHACTOR, TBFT, and Gugulethu cohorts, median CD4 was 400, 73, and 167 cells/μL, and prevalence of TB was 5%, 10%, and 18%, respectively. Factors predictive of TB in the derivation dataset and selected for the clinical score included male sex (1 point), ≥1 WHO TB symptom (7 points), smoking history (1 point), temperature >37.5°C (6 points), body mass index (BMI) 10) yielded TB prevalence of 1%, 1%, 2%, and 6% in the lowest risk group and 33%, 22%, 26%, and 32% in the highest risk group for XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively. At clinical score ≥2, the number needed to screen (NNS) ranged from 5.0 in Gugulethu to 11.0 in XPHACTOR. Limitations include that the risk score has not been validated in resource-rich settings and needs further evaluation and validation in contemporary cohorts in Africa and other resource-constrained settings. CONCLUSIONS: The simple and feasible clinical score allowed for prioritization of sensitivity and NPV, which could facilitate reductions in mortality from undiagnosed TB and safer administration of TPT during proposed global scale-up efforts. Differentiation of risk by clinical score cutoff allows flexibility in designing differentiated HIV-TB care to maximize impact of available resources
    corecore